
Foundations of Software Science (ソフトウェア基礎科学, W6-7, 2019) 1/6

Foundations of Software Science (ソフトウェア基礎科学) Week 6-7, 2019

Instructors: Kazutaka Matsuda and Eijiro Sumii
Notice!� �

In the next week, we will have a report assignment.� �
Curry-Howard Correspondence

Intuitionistic Logic

Let us consider the following proposition and proof.� �
Proposition. There is an irrational a such that ab is rational for an irrational b.

Proof. Let us consider a number
√
2
√
2
. If

√
2
√
2
is irrational, then take a =

√
2
√
2
and b =

√
2. If

√
2
√
2
is

rational, then take a =
√
2 and b =

√
2.� �

This proof is correct in the classical logic, but does not exactly give us those a and b. In other words, the
proof is not constructive. In contrast, we can prove the proposition by taking a =

√
2 and b = 2 log 3 (in this

case ab = 3). This proof is constructive in the sense that we have constructed this concrete pair of a and b.
The intuitionistic logic, very roughly speaking, is a (sort of) logic that allows only constructive proofs: P ∨Q

has a proof only when we have a proof of P or a proof of Q, and ∃x.P (x) has a proof only when we find a
concrete a such that P (a) holds. This is quite different from the classical logic, in which we can prove P ∨ ¬P
without proving P or ¬P . Notice that we used the fact that

√
2
√
2
is either rational or irrational in the above

proof.

Minimal (Propositional) Logic

Here, the set of propositional formulas is defined as follows.

A ::= P | A1 ⇒ A2 | A1 ∧A2 | A1 ∨A2

Sometimes, we consider a special propositional letter ⊥.
We will give a set of deduction rules for the minimal logic, a negation-free fragment of intuitionistic propo-

sitional logic, in the natural deduction style. The judgment ∆ ` A explicitly includes the assumptions as ∆:

1

Foundations of Software Science (ソフトウェア基礎科学, W6-7, 2019) 2/6

which is read that under a set ∆ of assumptions A holds.

A ∈ ∆
∆ ` A

Ax
∆ ∪ {A1} ` A2

∆ ` A1 ⇒ A2
⇒-I

∆ ` A1 ⇒ A2 ∆ ` A1

∆ ` A2
⇒-E

∆ ` A1 ∆ ` A2

∆ ` A1 ∧A2
∧-I

∆ ` A1 ∧A2

∆ ` A1
∧-E1

∆ ` A1 ∧A2

∆ ` A2
∧-E2

∆ ` A1

∆ ` A1 ∨A2
∨-I1

∆ ` A2

∆ ` A1 ∨A2
∨-I2

∆ ` A1 ∨A2 ∆ ∪ {A1} ` A′ ∆ ∪ {A2} ` A′

∆ ` A′ ∨-E

We say that A is provable under assumptions ∆ if ∆ ` A is derivable (i.e., there is a derivation tree whose root
concludes ∆ ` A), and especially when ∆ = ∅, we just say that A is provable. Some examples of deducible
formula are ((P ⇒ Q)∧P) ⇒ Q and (P ∧Q) ⇒ (Q∧P). A derivation tree in a proof system is sometimes called
a proof tree.

Exercise. Write proof trees for ((P ⇒ Q) ∧ P) ⇒ Q and (P ∧Q) ⇒ (Q ∧ P).

Exercise. Write a proof tree for ((P ⇒ Q) ⇒ P) ∧ (P ⇒ (P ⇒ Q)) ⇒ Q.

Adding the following rule, we will obtain a proof system of the intuitionistic propositional logic.

∆ ` ⊥
∆ ` A

⊥-E

The rule is sometimes called ex falso quodlibet (“from falsehood, anything”). Then, negation ¬A is given as a
shorthand for A ⇒ ⊥. Check that ∆ ` A and ∆ ` A ⇒ ⊥ implies ∆ ` ⊥, and ∆, A ` ⊥ implies ∆ ` A ⇒ ⊥.

Adding either one of the following rules to the proof system of the intuitionistic propositional logic, we will
obtain a proof system for the classical propositional logic.

∆ ` (A ⇒ ⊥) ⇒ ⊥
∆ ` A

DNE
∆ ` A ∨ (A ⇒ ⊥)

EM
∆ ∪ {A ⇒ ⊥} ` ⊥

∆ ` A
PbC

The system is known to be sound and complete; i.e., A is provable if and only if A is a tautology. Also, it is
known that A is provable in the classical logic if and only if ¬¬A is provable in the intuitionistic logic.

Exercise. Write a proof tree of ((P ⇒ Q) ⇒ P) ⇒ P in the classical propositional logic.

Curry-Howard Correspondence

We define the function ϕ(−) from types to propositional formulas as follows.

ϕ(P) = P (P is a base type)

ϕ(τ1 → τ2) = ϕ(τ1) ⇒ ϕ(τ2)

ϕ(τ1 × τ2) = ϕ(τ1) ∧ ϕ(τ2)

ϕ(τ1 + τ2) = ϕ(τ1) ∨ ϕ(τ2)

2

Foundations of Software Science (ソフトウェア基礎科学, W6-7, 2019) 3/6

Clearly, ϕ(−) is a bijection. Also, we define the function erase(−) as follows.

erase(Γ) = {ϕ(τ) | (x, τ) ∈ Γ}

Then, we have a following theorem.

Theorem (Curry-Howard Correspondence).

• For any Γ, M and τ , Γ ` M : τ implies erase(Γ) ` ϕ(τ).

• For any ∆ and A, there exist Γ and M such that ∆ ` A implies Γ ` M : ϕ−1(A), and ∆ = erase(Γ).

We do not show the complete proof (that can be done by induction on the derivations), but show intuition
underlying the proof by writing corresponding typing/deduction rules side by side, as follows.

(x, τ) ∈ Γ

Γ ` x : τ
T-Var

A ∈ ∆
∆ ` A

Ax

Γ] {x 7→ τ1} ` M : τ2
Γ ` λx.M : τ1 → τ2

T-Abs
∆ ∪ {A1} ` A2

∆ ` A1 → A2
⇒-I

Γ ` M : τ1 → τ2 Γ ` N : τ1
Γ ` M N : τ2

T-App
∆ ` A1 ⇒ A2 ∆ ` A1

∆ ` A2
⇒-E

Γ ` M : τ1 Γ ` N : τ2
Γ ` (M,N) : τ1 × τ2

T-Pair
∆ ` A1 ∆ ` A2

∆ ` A1 ∧A2
∧-I

Γ ` M : τ1 × τ2
Γ ` π1M : τ1

T-Fst
∆ ` A1 ∧A2

∆ ` A1
∧-E1

Γ ` M : τ1 × τ2
Γ ` π2M : τ2

T-Snd
∆ ` A1 ∧A2

∆ ` A2
∧-E2

Γ ` M : τ1
Γ ` InL M : τ1 + τ2

T-Left
∆ ` A1

∆ ` A1 ∨A2
∨-I1

Γ ` M : τ2
Γ ` InR M : τ1 + τ2

T-Right
∆ ` A2

∆ ` A1 ∨A2
∨-I2

Γ ` M : τ1 + τ2
Γ] {x 7→ τ1} ` N1 : τ

′

Γ] {y 7→ τ2} ` N2 : τ
′

Γ ` case M of (x.N1) (y.N2) : τ
′ T-Case

∆ ` A1 ∨A2

∆ ∪ {A1} ` A′

∆ ∪ {A2} ` A′

∆ ` A′ ∨-E

In this sense, a λ-term represents a proof in the minimal logic. Such a term representing a proof is sometimes
called a proof term.

Exercise. Give λ-terms of the types ((P → Q) × P) → Q and (P × Q) → (Q × P), where P and Q are some
base types. Show their typing derivations.

3

Foundations of Software Science (ソフトウェア基礎科学, W6-7, 2019) 4/6

Exercise. Give a λ-term of the type ((P → Q) → P) ∧ (P → (P → Q)) → Q, where P and Q are some base
types. Show its typing derivation.

Exercise. Give a λ-term of the type ((P + (P → R)) → R) → R, where P and R are some types. Show its
typing derivation.

Consistency via Curry-Howard

Definition (Consistency). We call a proof system consistent if ⊥ is not provable in the system.

Theorem. The minimal logic is consistent.

Proof. Suppose that ∅ ` ⊥. Then, by Curry-Howard correspondence, we have a term M such that ∅ ` M : ⊥.
(That is, the simply-typed λ-calculus is a model of the minimal logic.) By the subject reduction property and
strong normalization, we have a value V such that ∅ ` V : ⊥. Then, we perform case analysis of the form of V
to show that V cannot have type ⊥ for each case.

If V has the form of λx.V ′ for some V ′. Its type must has the form of τ1 → τ2, which cannot be ⊥. Similar
discussions apply to the cases V = (V1, V2), V = InL V ′, and V = InR V ′. Then, we consider the case where
V = W for a neutral term W . However, it is easy to show that FV(W) 6= ∅ and W cannot have any type under
the empty type environment.

In the proof, subjection reduction and strong normalization play very important roles in showing consistency.
Generally speaking, these two properties are important in a proof calculus based on Curry-Howard correspon-
dence, such as the calculus of construction and the Martin-Löf type theory. Both are (quite big) extension of
the simply-typed λ-calculus, and underlie proof assistants Coq and Agda, respectively.

FYI: Simply-Typed λ-Calculus for Intuitionistic Propositional Logic with
Negation

We add following construct to the simply-typed λ-calculus with pairs and sums.

M,N ::= · · · | error M

Accordingly, we add ⊥ to the set of types. Its reduction rules are given by:

(error M) N −→ error M πi (error M) −→ error M

case (error M) of (x.N1) (y.N2) −→ error M error (error M) −→ error M

alongside with
M −→ M ′

error M −→ error M ′

4

Foundations of Software Science (ソフトウェア基礎科学, W6-7, 2019) 5/6

Intuitively, error propagates the “exception” that something wrong has happened.
We also extend the set of values.

V ::= · · · | error W

The typing rule for error is designed as a correspondent to the rule ⊥-E.

Γ ` M : ⊥
Γ ` error M : τ

T-Error

Still we have many important properties, including subject reduction, progress, and strong normalization.
Also, check that there is no value that has type ⊥ under the empty type environment.

Exercise. Give a λ-term of type ((P → Q) → P) → ((P → ⊥) → ⊥). Show its typing derivation.

FYI: Kripke Model of Intuitionistic Logic

In the classical logic, a proposition is either true or false. However, in the intuitionistic logic, things are not
that simple; there is a proposition A such that A is not provable whereas ¬A leads to contradiction (i.e., ¬¬A
is provable). So, what does a proposition in the intuitionistic logic represent?

Curry-Howard correspondence suggests that a proposition A represents a set of proofs for A: a proof for
A1 ∧ A2 is a pair of proofs for A1 and A2 respectively, a proof for A1 ∨ A2 is either a left-tagged proof of A1

or a right-tagged proof of A2, and a proof for A1 ⇒ A2 is a function that maps a proof of A1 to a proof of
A2. This view of propositions is known as the BHK interpretation, which clarify the constructive nature of the
intuitionistic logic.

Here, we introduce another model of the intuitionistic propositional logic called the Kripke model.

Definition (Kripke model). A Kripke model is a triple (W,�,⊩) of a non-empty set W , a partial-order � on W ,
and binary relation ⊩ between W and propositional formulas, satisfying the following conditions for any w ∈ W
and any propositions A1 and A2.

• if w � w′, w ⊩ P implies w′ ⊩ P for any propositional letter P .

• w ⊩ A1 ∧A2 if and only if w ⊩ A1 and w ⊩ A2.

• w ⊩ A1 ∨A2 if and only if either w ⊩ A1 or w ⊩ A2.

• w ⊩ A1 ⇒ A2 if and only if w′ ⊩ A2 for any w′ such that w � w′ and w′ ⊩ A1.

• w ⊩ ⊥ does not hold for any w ∈ W .

Elements of W are sometimes called world. Intuitively, w � w′ means that w′ is a future of w, and w ⊩ A
means that we know that A holds at world w. The first line says that, once we know that P holds, we also know
that P holds in any future. The condition of w ⊩ A1 ⇒ A2 means that if we know that A1 holds now or in some
future, A2 must hold from this point. Notice that, for any world w, we have that w ⊩ ¬A if and only if w′ 6⊩ A

5

Foundations of Software Science (ソフトウェア基礎科学, W6-7, 2019) 6/6

for any world w′ such that w � w′. In other words, A does not hold neither now nor in the future. We omit the
last line if we consider the minimal logic instead of the full intuitionistic propositional logic.

Sometimes, for a Kripke model M = (W,�,⊩), we write M, w ⊩ A to clarify the model we consider. For a
Kripke model M = (W,�,⊩), we write M, w ⊩ ∆ if M, w ⊩ A for all A ∈ ∆. Also, we write ∆ ⊩ A if for every
Kripke model M = (W,�,⊩) and world w ∈ W , M, w ⊩ ∆ implies M, w ⊩ A.

It is known that the proof system of the intuitionistic propositional logic is sound and complete with respect
to the Kripke model.

Theorem. ∆ ` A if and only ∆ ⊩ A.

Model theory is sometimes useful to show that a certain proposition is not provable.

Example(s). We show that ⊩ ((P ⇒ ⊥) ⇒ ⊥)) ⇒ P by giving a concrete model M = (W,�,⊩) such that
w 6⊩ ((P ⇒ ⊥) ⇒ ⊥)) ⇒ P for some w ∈ W . To give such a model, there must be a world such that
w ⊩ ((P ⇒ ⊥) ⇒ ⊥) but not w ⊩ P . The former condition means that for any world w′ with w � w′, there is
some w′′ such that w′ � w′′ and w′′ ⊩ P . That is, P necessarily holds, but P is not required to be true now.
Thus, M = ({w1, w2}, {(w1, w2)}∗, {(w2, P)}) is such a model because w1 ⊩ (P ⇒ ⊥) ⇒ ⊥ holds but w1 ⊩ P
does not. We can illustrate this model as follows.?>=<89:; //?>=<89:;P

Here, a world is represented by a circle labeled by the propositional letters that hold in the world. 2

6

