Foundations of Software Science (ソフトウェア基礎科学) Week 5-6, 2019 Instructors: Kazutaka Matsuda and Eijiro Sumii

Typed *λ***-Calculus**

Definition (*λ*-terms with Sums and Products)**.** The set of *terms* is defined by the following BNF.

$$
M, N \ ::= x \mid M \mid N \mid \lambda x.M
$$

\n
$$
\mid (M, N) \mid \pi_1 M \mid \pi_2 M
$$

\n
$$
\mid \text{ln} \mid M \mid \text{ln} \mid M \mid \text{case } M \text{ of } (x.N_1) (y.N_2)
$$

Intuitively, (M, N) makes the pair of *M* and $N, \pi_1 M$ extracts the first component of the pair *M*, and *π*2*M* extracts the second component. Expressions InL *M* and InR *N* are injections: InL *M* assign the tag InL to *M* and InR *M* assign the tag InR to *M*. These tags are used in the caseanalysis performed by **case** *M* **of** $(x.N_1)(y.N_2)$: if *M* is tagged left as $\text{InL } M'$, then it is reduced to $N_1[M'/x]$, and if M is tagged right as $\ln R M'$, the it is reduced to $N_2[M'/x]$.

Formally, we have additional reduction rules

$$
\frac{\pi_1(M,N) \to M}{\text{case (lnL }M) \text{ of } (x.N_1) (y.N_2) \to N_1[M/x]} \quad \frac{\pi_2(M,N) \to N}{\text{case (lnR }M) \text{ of } (x.N_1) (y.N_2) \to N_2[M/y]}
$$

along with the rules to reduce subterms.

$$
\frac{M \to M'}{(M,N) \to (M',N)} \quad \frac{N \to N'}{(M,N) \to (M,N')} \quad \frac{M \to M'}{\pi_1 M \to \pi_1 M'} \quad \frac{M \to M'}{\pi_2 M \to \pi_2 M'}
$$
\n
$$
\frac{M \to M'}{\ln L M \to \ln L M'} \quad \frac{M \to M'}{\ln R M \to \ln R M'} \quad \frac{M \to M'}{\text{case } M \text{ of } (x.N_1) (y.N_2) \to \text{case } M' \text{ of } (x.N_1) (y.N_2)}
$$
\n
$$
\frac{N_1 \to N'_1}{N_2 \to N'_2}
$$
\n
$$
\frac{N_2 \to N'_2}{\text{case } M \text{ of } (x.N_1) (y.N_2) \to \text{case } M \text{ of } (x.N_1) (y.N'_2)}
$$
\n
$$
\frac{N_2 \to N'_2}{\text{case } M \text{ of } (x.N_1) (y.N'_2) \to \text{case } M \text{ of } (x.N_1) (y.N'_2)}
$$

There are terms, such as π_1 ($\lambda x.x$) and ($(\lambda x.x)$, $(\lambda y.y)$) ($\lambda z.z$), that are in normal form but appear intuitively meaningless. We formalize "meaningful" normal form as *values* below (mutually defined with the set of *neutral terms*).

$$
V ::= \lambda x.V \mid (V_1, V_2) \mid \text{InL } V \mid \text{InR } V \mid W
$$

$$
W ::= x \mid W V \mid \pi_1 W \mid \pi_2 W \mid \text{case } W \text{ of } (x.V_1) (y.V_2)
$$

We call a term *stuck* if it is in normal form but not a value. Accordingly, we say that a term *M gets stuck* if $M \longrightarrow^* M'$ for some stuck term M' .

∪ Goal →

✒ ✑

Find a way to tell that a term will not get stuck before trying to reduce it.

Why we have pairs and sums explicitly? One reason is to introduce clearly-meaningless terms like π_1 ($\lambda x.x$) with no "meaningful" way to evaluate them. Recall that everything is a function in the untyped *λ*-calculus. The other reason is that simple types discussed below are not powerful enough to type Church-encoded data.

Simple Types

The idea is to classify terms by which kind of values they evaluates to. For example, if we know that $\lambda x.x$ evaluates to a function, we know that $\pi_1(\lambda x.x)$ is meaningless because it tries to extract the first component of a function (this is clearly impossible).

Definition. The set of *(simple) types* is defined as follows.

$$
\tau ::= B \mid \tau_1 \times \tau_2 \mid \tau_1 + \tau_2 \mid \tau_1 \to \tau_2
$$

Here, *B* represents a *base type* such as *Int* or *Bool*, $\tau_1 \times \tau_2$ represents the *product type* of τ_1 and *τ*2, *τ*¹ +*τ*² represents the *sum type* of *τ*¹ and *τ*2, and *τ*¹ *→ τ*² represents the *function type* from *τ*¹ to *τ*₂. Very roughly speaking, a term belongs to the type $\tau_1 \times \tau_2$ will be reduced to a pair whose first and second components belong to τ_1 and τ_2 respectively, and a term belongs to the type $\tau_1 + \tau_2$ will be reduced to a term that is either injected left from a term in τ_1 or injected right from a term in *τ*2.

Now we define how to give a term a type . A *type environment* is a mapping from variables to types, which is used to assign types to free variables in a term. A *typing judgment* $\Gamma \vdash M : \tau$, which is read that under typing environment Γ term M has type τ , is defined by the following typing rules.

$$
\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \text{ T-VAR} \qquad \frac{\Gamma \vdash M : \tau' \to \tau \quad \Gamma \vdash N : \tau'}{\Gamma \vdash M N : \tau} \text{ T-APP} \qquad \frac{\Gamma \uplus \{x \mapsto \tau_1\} \vdash M : \tau_2}{\Gamma \vdash \lambda x . M : \tau_1 \to \tau_2} \text{ T-ABs}
$$
\n
$$
\frac{\Gamma \vdash M : \tau_1 \quad \Gamma \vdash N : \tau_2}{\Gamma \vdash (M, N) : \tau_1 \times \tau_2} \text{ T-PAR} \qquad \frac{\Gamma \vdash M : \tau_1 \times \tau_2}{\Gamma \vdash \pi_1 M : \tau_1} \text{ T-FST} \qquad \frac{\Gamma \vdash M : \tau_1 \times \tau_2}{\Gamma \vdash \pi_2 M : \tau_2} \text{ T-SND}
$$
\n
$$
\frac{\Gamma \vdash M : \tau_1}{\Gamma \vdash \text{InL } M : \tau_1 + \tau_2} \text{ T-LEFT} \qquad \frac{\Gamma \vdash M : \tau_2}{\Gamma \vdash \text{InR } M : \tau_1 + \tau_2} \text{ T-RIGHT}
$$
\n
$$
\frac{\Gamma \vdash M : \tau_1}{\Gamma \vdash \text{case } M \text{ of } (x.N_1) (y.N_2) : \tau'}
$$
\n
$$
\frac{\Gamma \vdash N : \tau_1 \vdash \Gamma \vdash \text{Case } M \text{ of } (x.N_1) (y.N_2) : \tau'}{\Gamma \vdash \text{case } M \text{ of } (x.N_1) (y.N_2) : \tau'}
$$
\n
$$
\frac{\Gamma \vdash N : \tau_1 \vdash \text{Case } M \text{ of } (x.N_1) \to \text{Case } M \text
$$

Above, we name each inference rule for convenience. Here, \oplus represents disjoint union. We assumed that a term *M* of $\Gamma \vdash M : \tau$ is appropriately α -renamed so that every $\Gamma \uplus {\{\ldots\}}$ above is defined. A term *M* is called *well-typed* (under Γ) if $\Gamma \vdash M : \tau$ holds for some τ , and otherwise it is called *ill-typed*. Notice that $\emptyset \vdash M : \tau$ implies that M is closed. For this set of the inference rules, which rule should be applied to a term *M* is uniquely determined by the form of *M*. The set of rules satisfying this condition is sometimes called *syntax-directed*. An example of a well-typed term is *λx.*(*x, x*), which has the following derivation tree for any type $τ$.

An example of an ill-typed term is π_1 ($\lambda x.x$).

We state that well-typed closed normal forms are values.

Theorem ((An Equivalent form of) Progress). For a term *M*, if $\emptyset \vdash M : \tau$ for some τ and M is in a normal form, *M* is a value.

Proof. Induction on the typing derivation of $\emptyset \vdash M : \tau$.

Type Safety

Type safety is a statement something like "well-typed programs do not go wrong". Here, since we are interested in whether a term will get stuck or not, the type safety for our case is that "well-typed programs do not get stuck". This property is usually proved by proving the two properties:

- *Subject reduction (or, preservation)* is a statement that reductions preserve types. Thus, well-typed terms are reduced to well-typed terms.
- *Progress* is a statement that a well-typed term is not stuck, i.e., either a value or reducible. In other words, well-typed normal forms are values, which already we have proved.

Having the two properties, we can prove the type safety by a simple induction.

In advance to stating the subject reduction property, we introduce an important lemma below.

Lemma (Substitution Lemma). Let *M* and *N* be terms. If $\Gamma \uplus \{x \mapsto \tau\} \vdash M : \tau'$ and $\Gamma \vdash N : \tau$ for some Γ , τ and τ' then, $\Gamma \vdash M[N/x] : \tau'$ holds.

Proof. Induction on the derivation of $\Gamma \uplus {\{x \mapsto \tau\}} \vdash M : \tau'.$

We are now ready to prove the subject reduction.

Theorem (Subject Reduction). Let *M* be a term such that $\Gamma \vdash M : \tau$ for some Γ and τ . If $M \longrightarrow M'$, then $\Gamma \vdash M' : \tau$ holds.

Proof. Induction on the derivation of *M* → *M'*. We use the substitution lemma when substitution occurs. \Box

Theorem (Type Safety). For a term *M* such that $\emptyset \vdash M : \tau$ for some τ , if $M \longrightarrow^* M'$ for some *M′* , *M′* is not stuck.

Proof. By the subject reduction property and by the induction on $M \rightarrow M'$, we can prove that $\Gamma \vdash M' : \tau$ holds. Then, by the progress property, M' is not stuck. \Box

Other Important Properties

Theorem (Decidability of Type Checking)**.** Given a type environment Γ, a term *M* and a type *τ* , checking whether $\Gamma \vdash M : \tau$ holds or not is decidable. \Box

Theorem (Strong Normalization)**.** For a well-typed term *M*, there is no infinite sequence of *M −→* $M' \longrightarrow M'' \longrightarrow \cdots$. \Box

In other words, every well-typed term has a normal form. This also means that the simply-typed *λ*-calculus is not Turing complete.

 \Box

 \Box