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Typed M-Calculus
Definition (A-terms with Sums and Products). The set of terms is defined by the following BNF.
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|

InL M | InR M | case M of (x.Ny) (y.N2) O

Intuitively, (M, N) makes the pair of M and N, m M extracts the first component of the pair
M, and mo M extracts the second component. Expressions InL M and InR N are injections: InL M
assign the tag InL to M and InR M assign the tag InR to M. These tags are used in the case-
analysis performed by case M of (z.N7) (y.N2): if M is tagged left as InL M’, then it is reduced
to N1[M'/z], and if M is tagged right as InR M’ the it is reduced to No[M'/x].

Formally, we have additional reduction rules

m (M,N)— M m (M,N) — N

case (InL M) of (z.N1) (y.N2) — Ni[M/z] case (InR M) of (x.Ny) (y.N2) — No[M/y]

along with the rules to reduce subterms.

M — M’ N — N’ M — M M — M
(M,N) — (M",N) (M,N) — (M,N') mM — mM oM — moM’
M — M’ M — M’ M — M’
InLM — InL M’ InRM — InR M’ case M of (z.N7) (y.N2) — case M’ of (z.N7) (y.N2)
N1 — N{
case M of (z.Ny) (y.N2) — case M of (z.N7) (y.N2)
N2 — Né

case M of (z.Ny) (y.N2) — case M of (z.N1) (y.N3)

There are terms, such as m (Az.z) and ((Az.z), (Ay.y)) (Az.z), that are in normal form but
appear intuitively meaningless. We formalize “meaningful” normal form as values below (mutually
defined with the set of neutral terms).

Vi=Xde V| (Vi,Va) [InLV | InRV | W
W =z |mW | mW | case W of (z.V7) (y.V2)

We call a term stuck if it is in normal form but not a value. Accordingly, we say that a term M
gets stuck if M —* M’ for some stuck term M’.

Goal
[Find a way to tell that a term will not get stuck before trying to reduce it. j




Why we have pairs and sums explicitly? One reason is to introduce clearly-meaningless
terms like m (Az.x) with no “meaningful” way to evaluate them. Recall that everything is a
function in the untyped A-calculus. The other reason is that simple types discussed below are not
powerful enough to type Church-encoded data.

Simple Types

The idea is to classify terms by which kind of values they evaluates to. For example, if we know
that Az.z evaluates to a function, we know that w1 (Az.x) is meaningless because it tries to extract
the first component of a function (this is clearly impossible).

Definition. The set of (simple) types is defined as follows.
Tu=B|m X1+ — O

Here, B represents a base type such as Int or Bool, 71 X 1o represents the product type of 71 and
To, T1 + To represents the sum type of 71 and 79, and 71 — 79 represents the function type from 71 to
To. Very roughly speaking, a term belongs to the type 71 X 7 will be reduced to a pair whose first
and second components belong to 71 and 75 respectively, and a term belongs to the type 71 + 7
will be reduced to a term that is either injected left from a term in 71 or injected right from a term
in 7.

Now we define how to give a term a type . A type environment is a mapping from variables
to types, which is used to assign types to free variables in a term. A typing judgment T' - M : T,
which is read that under typing environment I' term M has type 7, is defined by the following
typing rules.
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Above, we name each inference rule for convenience. Here, W represents disjoint union. We assumed
that a term M of I' = M : 7 is appropriately a-renamed so that every I' W {... } above is defined.
A term M is called well-typed (under I') if I' = M : 7 holds for some 7, and otherwise it is called
ill-typed. Notice that () = M : 7 implies that M is closed. For this set of the inference rules, which
rule should be applied to a term M is uniquely determined by the form of M. The set of rules
satisfying this condition is sometimes called syntaz-directed. An example of a well-typed term is
Ax.(z,x), which has the following derivation tree for any type 7.
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An example of an ill-typed term is m; (Az.x).
We state that well-typed closed normal forms are values.

Theorem ((An Equivalent form of) Progress). For a term M, if @ - M : 7 for some 7 and M is in
a normal form, M is a value.

Proof. Induction on the typing derivation of O - M : 7. O

Type Safety

Type safety is a statement something like “well-typed programs do not go wrong”. Here, since we
are interested in whether a term will get stuck or not, the type safety for our case is that “well-typed
programs do not get stuck”. This property is usually proved by proving the two properties:

e Subject reduction (or, preservation) is a statement that reductions preserve types. Thus,
well-typed terms are reduced to well-typed terms.

e Progress is a statement that a well-typed term is not stuck, i.e., either a value or reducible.
In other words, well-typed normal forms are values, which already we have proved.

Having the two properties, we can prove the type safety by a simple induction.
In advance to stating the subject reduction property, we introduce an important lemma below.

Lemma (Substitution Lemma). Let M and N be terms. f T'W{x+— 7} M : 7 and T+ N : 7
for some I, 7 and 7/ then, I' - M[N/z] : 7/ holds.

Proof. Induction on the derivation of T' W {z — 7} - M : 7. O
We are now ready to prove the subject reduction.

Theorem (Subject Reduction). Let M be a term such that I' = M : 7 for some I' and 7. If
M — M’ then I' = M’ : 7 holds.

Proof. Induction on the derivation of M — M’. We use the substitution lemma when substitution
occurs. 0

Theorem (Type Safety). For a term M such that § - M : 7 for some 7, if M —* M’ for some
M’, M’ is not stuck.

Proof. By the subject reduction property and by the induction on M —* M’, we can prove that
'~ M’ : 7 holds. Then, by the progress property, M’ is not stuck. ]

Other Important Properties

Theorem (Decidability of Type Checking). Given a type environment I', a term M and a type T,
checking whether I' = M : 7 holds or not is decidable. O

Theorem (Strong Normalization). For a well-typed term M, there is no infinite sequence of M —
M —M"— ... O

In other words, every well-typed term has a normal form. This also means that the simply-typed
A-calculus is not Turing complete.



