
Foundations of Software Science (ソフトウェア基礎科学) Week 4-5, 2019

Instructors: Kazutaka Matsuda and Eijiro Sumii

Why We Learn Untyped and Typed λ-Calculus?

• a model of computation,

• the simplest programming language with a type system, and

• a formal proof system for the intuitionistic propositional logic.

Untyped λ-Calculus

Definition (λ-terms). The set of λ-terms is defined by the following BNF.

M,N ::= x | M N | λx.M

A λ-term is sometimes called a λ-expression. An expression of the form of M N is called
(function) application, and an expression of the form of λx.M is called λ-abstraction.

Example(s). λx.x, λx.y, λx.(x x). (λx.(x x))(λx.(x x)) are examples of λ-terms. 2

Intuitively, λx.M represents a function. For example, the function f defined by f(x) = x+3 is
represented as λx.x+ 3, where + and 3 are corresponding λ-terms.

Convention� �
Function application is left-associative, and binds tighter than abstractions. For example,
M1 M2 M2 means (M1 M2) M3, and λx.x x means λx.(x x). It is simplest to follow the
convention that N in (M N) must be parenthesized unless N is a variable. A term of the form
of λx1.λx2. . . . λxn.M is sometimes written as λx1x2 . . . xn.M .� �

Occurrence and Subterms

A λ-term may contain multiple occurrences of the same term that have different roles. For example,
a term x (λx.x (λx.x)) contains three occurrences of the same variable x, which we want to
distinguish as we will show later. A way to formalize occurrences is to use paths in the tree
representation of a λ-term.

For a set S, we write by S∗ the set of sequences of S elements. That is, an element of S∗ is a
sequence s1s2 . . . sn for some n where si ∈ S for all 1 ≤ i ≤ n. The empty sequence is written by ϵ.

Definition. For a λ-term M , the set of positions POS(M) ⊆ {1, 2}∗ is defined inductively as
follows.

POS(x) = {ϵ}
POS(M N) = {ϵ} ∪ {1p | p ∈ POS(M)} ∪ {2p | p ∈ POS(N)}
POS(λx.M) = {ϵ} ∪ {1p | p ∈ POS(M)}

1

Definition. For a λ-termM and a position p ∈ POS(M), a subterm M |p at p is defined inductively
as follows.

M |ϵ = M
(M1 M2)|ip = Mi|p (i = 1, 2)
(λx.M)|1p = M |p

We also say that M occurs at p in N if M is a subterm of N at p. We merely say that M is
a subterm of N or M occurs in N if M = N |p for some p. Note that x does not occur in λx.y.
Formally, an occurrence of a term M in N is a pair (M,p) such that M = N |p, but we do not
explicitly use such pairs in what follows.

Free and Bound Variables

Definition. For a λ-term M , a variable x that occurs at p in M is called bound if there is a subterm
λx.M ′ in M at p′ and p = p′p′′ for some p′′ (i.e., λx.M ′ contains the occurrence of x). Otherwise,
the variable occurrence is called free.

Example(s). The λ-term (λx.x) x has two occurrences of x: the left one at 11 is bound and the
other at 2 is free. 2

Exercise. Underline the bound occurrences of variables in (λx.x (λy.x y) y) (λz.z) z.

Definition. For a λ-term M , the set of free variables FV(M) of M is the set of variables that
occur free in M . The set can be defined inductively as follows.

FV(x) = {x}
FV(λx.M) = FV(M) \ {x}
FV(M N) = FV(M) ∪ FV(N)

A term M is called closed if M has no free variables, i.e., FV(M) = ∅. Closed λ-terms
are sometimes called combinators. Famous combinators include I

def
= λx.x, K

def
= λx.λy.x, S

def
=

λx.λy.λz.x z (y z), ∆
def
= λx.x x, and Y that will be introduced later.

Substitution and α-equivalence

Intuitively, a substitution M [N/x] replaces all the free occurrences of x in M with N . However,
naively doing so is problematic when N contains free variables. Let us consider two λ-terms λx.z x
and λy.z y. We do not want to distinguish two terms as f(x) = z + x and f(y) = z + y represent
the same function. However, naively replacing z with y makes the two function different. Thus, we
define substitution so that it renames bound variables if necessary, as follows.

Definition. For a variable x and λ-terms M and N , we define a (capture-avoiding) substitution of
x in M to N , M [N/x], inductively as follows.

y[N/x] =

{
N (x = y)
y (x ̸= y)

(λy.M)[N/x] =

λy.M (x = y)
λy.M [N/x] (x ̸= y ∧ y ̸∈ FV(N))
(λz.M [z/y])[N/x] (x ̸= y ∧ y ∈ FV(N) ∧ z ̸∈ FV(N))

(M M ′)[N/x] = (M [N/x]) (M ′[N/x])

2

Note. There is another common way to write substitution: M [x := N] to mean M [N/x]. Some
people use a prefix notation to write [x := N]M instead. Some people represent a (simultaneous)
substitution itself as a function θ from variables to terms such that {x | θ(x) ̸= x} is finite, and
then define its application Mθ to a term M .

The notion of α-equivalence formalizes the equality of terms up to remaining of bound variables.

Definition (α-equivalence). the relation ≡α is the smallest reflexive and transitive relation satis-
fying the following conditions.

• λx.M ≡α λy.M [y/x] for all λ-terms M , variables x, and variables y ̸∈ FV(M).

• M ≡α M ′ implies λx.M ≡α λx.M ′ for all λ-terms M and M ′.

• M ≡α M ′ implies M N ≡α M ′ N for all λ-terms M , M ′ and N .

• N ≡α N ′ implies M N ≡α M N ′ for all λ-terms M , N and N ′.

Example(s). The pairs λx.x and λy.y, λx.z x and λy.z y, and (λx.x x) (λx.x x) and (λy.y y) (λz.z z)
are all α-equivalent terms. In contrast, λx.z x and λx.w x are not α-equivalent. 2

Replacement of a λ-term with an α-equivalent one is called α-conversion or α-renaming.

Convention� �
We identify two α-equivalent λ-terms. In other words, λx.x and λy.y are treated as the same
term. In this sense, the third clause of the definition (λy.M)[N/x] is superfluous because we
can choose the name of bound variables so that the conditions in the second clause are fulfilled.� �

β-Reduction

Now we are ready to define the all and only computing mechanism of λ-terms, β-reduction.

Definition (β-reduction). We define the relation −→β by the following rules.

(λx.M)N −→β M [N/x]

M −→β M ′

M N −→β M ′ N

N −→β N ′

M N −→β M N ′
M −→β M ′

λx.M −→β λx.M ′

We sometimes omit β to write −→. Intuitively, β-reduction replaces an occurrence of (λx.M) N
with M [N/x]. A term M is in a (β-) normal form if there is no N such that M −→β N . We
say M is a normal form of N if M is in a normal form and N −→∗

β M . Some λ-terms do not
have normal forms, such as (λx.x x) (λx.x x). A subterm of the form of (λx.M) N is sometimes
called (β-) redex. A term can contain multiple redexes as (λx.(λy.y) x) ((λz.z) (λw.w)); in such a
situation, the result of a β-reduction depends on the choice of the redex. It is known that those
terms will coincide after further β-reductions if we choose redexes appropriately. This property is
called Church-Rosser property.

Theorem (Church-Rosser). Let ≡β be the smallest reflexive, symmetric and transitive relation
that contains −→β. Then, for all λ-terms M and M ′ such that M ≡β M ′, there exists a term N
such that M −→∗

β N and M ′ −→∗
β N .

3

It follows that, if a term has a normal form, the normal form is unique. Even if a term
has a normal form, not all sequence of reduction lead to it (some may never terminate), as
(λx.y) ((λx.x x) (λx.x x)). It is known that, if we reduce the leftmost outermost redex, the
reduction sequence always ends in the normal form if it exists.

We may consider another reduction called η.

x ̸∈ FV(M)

λx.Mx −→η M

M −→η M ′

M N −→η M ′ N

N −→η N ′

M N −→η M N ′
M −→η M ′

λx.M −→η λx.M ′

Church Encoding

We now introduce how to represent computations in λ-calculus.

Church Booleans. First, we represent computation with Boolean values in λ-calculus. We
represent a thing by what it can do. For Booleans, what they can do is branching, so we define
true and false as follows.

true
def
= λx.λy.x

false
def
= λx.λy.y

Branching then is merely an application.

if M1 then M2 else M3
def
= M1 M2 M3

It is easy to see that true M N −→∗ M and false M N −→∗ N .
Boolean functions can be defined on the representation. For example, the negation operator

not can be defined as:
not

def
= λb.λx.λy.b y x.

Check how terms (not true) M N and (not false) M N will be reduced. As another example, we
define the function and that does conjunction:

and
def
= λb1.λb2.b1 b2 false.

The subterm b1 b2 false essentially represents if b1 then b2 else false. Check how terms (and true b) M N
and (and false b) M N will be reduced.

Exercise. Define a λ-term “or” that corresponds to disjunction.

Church Pairs. We now define the representation of pairs. Since a pair encapsulates two pieces
of data, what a pair can do is to pass the data to the rest of computation. Thus, if we write pair
for the pair constructor, we can define it as follows.

pair
def
= λx.λy.λf.f x y

We extract the first and the second components of a pair by the following functions fst and snd ,
respectively.

fst
def
= λp.p true

snd
def
= λp.p false

Check how fst (pair M N) will be reduced.

4

Church Numerals. Now, we discuss how to perform computations on natural numbers. In
Church encoding, a natural number n is represented by the nth iteration.

0
def
= λs.λz.z

1
def
= λs.λz.s z

2
def
= λs.λz.s (s z)

3
def
= λs.λz.s (s (s z))
...

n = λs.λz. s (. . . (s︸ ︷︷ ︸
n

z) . . .)

In other words, the encoding of a natural number n represents the same computation as the following
JavsScript-like code.

var r = z;

for (var i = 0; i < n; i++) {

r = s(r);

}

In advance to defining the addition of Church numerals, we define the function succ to compute
the successor.

succ
def
= λn.λs.λz.s (n s z)

Addition add is then as follows.
add

def
= λn.λm.n succ m

For example, add 1 1 is reduced as follows.

add 1 1 = (λn.λm.n succ m) (λs.λz.s z) (λs.λz.s z)

−→ (λm.(λs.λz.s z) succ m) (λs.λz.s z)

−→ (λs.λz.s z) succ (λs.λz.s z)

−→ (λz.succ z) (λs.λz.s z)

−→ succ (λs.λz.s z) = (λn.λs.λz.s (n s z)) (λs.λz.s z)

−→ λs′.λz′.s′ ((λs.λz.s z) s′ z′)

−→ λs′.λz′.s′ ((λz.s′ z) z′) −→ λs′.λz′.s′ (s′ z′) = 2

Exercise. Another definition of succ is

succ
def
= λn.λs.λz.n s (s z).

How add 1 1 will be reduced with this definition of succ? Also, one can define add without using
succ as follows.

add
def
= λn.λm.λs.λz.n s (m s z)

Compute add 1 1 with this definition.

Exercise. Give λ-terms mult and pow that compute multiplication and exponentiation.

We need a small trick to define a predecessor function.

pred
def
= λn.fst (n (λp.pair (snd p) (succ (snd p)) (pair 0 0))

5

The trick is to keep the result of the previous iteration by using a pair. Notice that pred 0 evaluates
to 0 in this definition.

By using pred , we can define subtraction.

sub
def
= λn.λm.m pred n

Notice that sub n m evaluates to 0 if n ≤ m.
It is sometimes useful to check whether a number is 0 or not.

isZero
def
= λn (λx.false) true

Exercise. Give λ-terms le, lt , ge, gt and eq that correspond to (≤), (<), (≥), (>) and (=) on
natural numbers, respectively.

General Recursion

Assume that we have a λ-term Y that can be reduced as follows.

Y M −→∗ M (Y M)

With Y , we can realize recursive functions:

sum
def
= Y (λf.λn.if isZero n then 0 else add n (f (pred n))).

For example, sum 2 evaluates as follows.

sum 2 −→∗ if isZero 2 then 0 else add 2 (sum (pred 2))

−→∗ add 2 (sum 1)

−→∗ add 2 (if isZero 1 then 0 else add 1 (sum (pred 1)))

−→∗ add 2 (add 1 (sum 0))

−→∗ add 2 (add 1 (if isZero 0 then 0 else add 0 (sum (pred 0))))

−→∗ add 2 (add 1 0) −→∗ 3

How do we define such Y ? A hint is the λ-term ∆ = λx.x x; we have ∆ (λx.∆ x) −→
(λx.∆ x) (λx.∆ x) −→ ∆ (λx.∆ x). Then, consider a slightly different version ∆ (λx.f (∆ x))) that
produces f after copying by the first ∆. Then, we have ∆ (λx.f (∆ x))) −→ (λx.f (∆ x)) (λx.f (∆ x)) −→
f (∆ (λx.f (∆ x))). Thus, we can define Y as follows.

Y
def
= λf.∆ (λx.f (∆ x))

This Y is known as Curry’s fixed-point combinator.

Exercise. Give a λ-term that computes factorials with or without Y . Give a λ-term that computes
the Ackermann function a defined below with Y .

a(m,n) =

n+ 1 if m = 0,
a(m− 1, 1) if n = 0,
a(m− 1, a(m,n− 1)) otherwise.

6

