Instructors: Kazutaka Matsuda and Eijiro Sumii

Propositional Logic

Proposition: a statement that is true or false.

Example(s). "
$$1 + 1 + 1$$
 is 3", "I am Matsuda", "2 is greater than 3".

Propositional logic: a logic whose atomic constructs are proposition.

Table 1: Cheat Sheet of Propositional Logic

Formula	How to Read	Informal Explanation: When it is True
\overline{P}	" P "	A variable that ranges over propositions.
$\neg A$	"not A "	A is false.
$A \wedge B$	" A and B "	Both A and B are true.
$A \vee B$	" $A \text{ or } B$ "	At least one of A and B is true.
$A \Rightarrow B$	" A implies B "	B is true whenever A is.

Name of Symbols P (propositional variable/propositional letter), \neg (negation), \land (conjunction), \lor (disjunction), and \Rightarrow (implication).

<u>Definition.</u> A formula A is a tautology if A is true no matter of the truth of propositional variables in it.

Example(s).
$$P \Rightarrow P, P \land Q \Rightarrow P, P \lor \neg P, \neg (P \land Q) \Rightarrow \neg P \lor \neg Q$$
 are tautologies.

Predicate Logic

Predicate: a statement with (zero or more) variables for things (individuals) that becomes true or false after substituting the variables with concrete individuals.

Example(s). "
$$x$$
 is 3 ", " x is Matsuda", " x is greater than y ".

Predicate logic: a logic whose atomic constructs are predicates.

Table 2: Cheat Sheet of Predicate Logic

		O
Formula	How to Read	Informal Explanation: When it is True
$P(x_1,\ldots,x_n)$	" $P(x_1,\ldots,x_n)$ "	A variable that represents a predicate with
		variables x_1, \ldots, x_n .
$\forall x.A$	"For any x, A "	A is true for all individuals x .
$\exists x.A$	"There exists x s.t. A "	B is true for some individual x .

We also use individual constant a, b, c, etc. For some specific theories, we may write $\forall x \in X.A$ or $\exists x \in X.A$ to specify the set that x ranges over.

Note. Nullary predicates (or, predicates with zero variables) are propositions.

Name of Symbols \forall (universal quantifier), and \exists (existential quantifier).

<u>Definition.</u> A formula A is valid if A is true no matter how we replace the individual constants in A with concrete individuals and the predicate variables in A with concrete predicates.

Note. The set of individuals must be instantiated to a non-empty set. This the reason why $(\forall x. P(x)) \Rightarrow (\exists x. P(x))$ is valid.

Example(s). $P(a) \Rightarrow \exists x. P(x)$, and $(\exists x. \forall y. P(x,y)) \Rightarrow (\forall y. \exists x. P(x,y))$ are valid. Note that the converse of the latter predicate, $(\forall y. \exists x. P(x,y)) \Rightarrow (\exists x. \forall y. P(x,y))$, is not valid.

Some Notations for Set

Notation	Meaning
$S \cap T$	$\forall x. \ x \in (S \cap T) \Leftrightarrow x \in S \land y \in T.$
$S \cup T$	$\forall x. \ x \in (S \cup T) \Leftrightarrow x \in S \lor y \in T.$
$S \setminus T$	$\forall x. \ x \in (S \setminus T) \Leftrightarrow x \in S \land \neg (x \in T).$
$S \subseteq T$	$S \subseteq T \Leftrightarrow \forall x. \ x \in S \Rightarrow x \in T.$
S = T	$S = T \Leftrightarrow S \subseteq T \land T \subseteq S.$
$2^S, \mathcal{P}(S)$	$\forall x. \ x \in 2^S \Leftrightarrow x \subseteq S.$
$\{x \in X \mid P(x)\}$	$\forall y. \ y \in \{x \in X \mid P(x)\} \Leftrightarrow y \in X \land P(y).$

Sometimes, we write $\{x \mid x \in X \land P(x)\}\$ or $\{x \mid x \in X, P(x)\}\$ for $\{x \in X \mid P(x)\}\$.

Mathematical Induction

We write N for the set of natural numbers. (In logic and computer science, 0 is a natural number.)

Axiom (Induction Principle on Natural Numbers). For all unary predicates P on \mathbb{N} ,

$$\forall x \in \mathbb{N}. \ P(x) \Leftrightarrow (P(0) \land \forall x \in \mathbb{N}. P(x) \Rightarrow P(x+1))$$

holds.

Theorem (Complete Induction). For all unary predicates P on \mathbb{N} ,

$$\forall x \in \mathbb{N}. P(x) \Leftrightarrow (\forall x \in \mathbb{N}. (\forall y \in \mathbb{N}. (y < x) \Rightarrow P(y)) \Rightarrow P(x))$$

holds.

Proof. Apply the induction principle for the predicate $Q(x) = \forall y \in \mathbb{N}. (y \leq x) \Rightarrow P(y)$.

<u>Definition</u> (Well-founded Relation). A relation \prec on S is well-founded if there is no infinite sequence x_1, x_2, \ldots in S such that $x_{i+1} \prec x_i$ for all $i \geq 1$.

Theorem. For all well-founded relations \prec on S and all unary predicates P,

$$\forall x \in S.P(x) \quad \Leftrightarrow \quad \big(\forall x \in S.(\forall y \in S.(y \prec x) \Rightarrow P(y)) \Rightarrow P(x)\big)$$

holds.