
Foundations of Software Science (ソフトウェア基礎科学/ソフトウエア基礎)

Reporting Assignment

� �
Deadline (firm): Dec. 13th, 2019 (23:59 JST)

How to submit: Make a PDF with LaTeX or Word, and submit it by email to

the following mail address with the subject “FSS 2019: Report 2”.

kztk@ecei.tohoku.ac.jp

Both report and email must contain your name and student ID.

I do not accept handwritten reports.

Grading: This report assignment is a substitute for a midterm exam. Let r be

the score of this report, then the score of your midterm exam will be min(100, r).

Thus, you do not need to answer all the questions. The minimal requirement would

be answering 6 or 7 easy questions or 1 laborious question.� �
I. Consider the natural numbers defined by the following BNF

m,n ::= Z | S(n)

and the function add defined inductively as follows.

add(Z ,m) = m

add(S (n),m) = S (add(n,m))

(1) (10 points) Compute add(S(S(Z)), S(Z)).

(2) (10 points) Prove that Z is the left unit of add , i.e., add(Z, n) = n for all natural

numbers n.

(3) (20 points) Prove by induction that Z is the right unit of add , i.e., add(n,Z) = n

for all natural numbers n.

(4) (20 points) Prove by induction that add(n, S(m)) = S(add(n,m)) for all natural

numbers n and m.

(5) (35 points) Prove by induction that add is associative.

1



II. Consider the untyped λ-calculus lectured in class.

(1) (20 points) Define append to be the following λ-term.

append = λx.λy.λc.λn.x c (y c n)

Let A1, A2, B1 and B2 be λ-terms in normal form. Reduce

append (λc.λn.c A1 (c A2 n)) (λc.λn.c B1 (c B2 n))

to normal form. Write down each reduction step and underline the redexes chosen in

the reduction sequence.

(2) (25 points) Terms like λc.λn.c A1 (c A2 n) above are called Church lists. Specif-

ically, λc.λn.n represents the empty list, and λc.λn.c A1 (c A2 (. . . (c Ak n) . . . ))

represents the list [A1, A2, . . . , Ak]. Give λ-terms head and tail that have the following

reduction sequences if k > 0.

head (λc.λn.c A1 (c A2 (. . . (c Ak n) . . . ))) −→∗ A1

tail (λc.λn.c A1 (c A2 (. . . (c Ak n) . . . ))) −→∗ λc.λn.c A2 (. . . (c Ak n) . . . )

We do not specify the behavior of head and tail for λc.λn.n.

(3) (20 points) Give a λ-term null that checks whether an input Church list is empty

or not. For example, the function behaves as below.

null (λc.λn.c A1 (c A2 (. . . (c Ak n) . . . ))) −→∗

{
λx.λy.x (k = 0)

λx.λy.y (k > 0)

(4) (100 points) Instead of having arbitrary λ-abstractions, a fixed set of predefined

functions is known to be sufficient for Turing-completeness. What is the set? Justify

your answer.

2



III. Consider the simply typed λ-calculus with sums and products lectured in class.

(1) (15 points) Give the type of the following λ-term.

λs.λz.s (s z)

Justify your answer by writing down its typing derivation.

(2) (15 points) Give a λ-term that has the type (A → B → C) → B → A → C

under the empty type environment, where A, B, and C are some base types. Write

down its typing derivation.

(3) (15 points) Check your answer to the previous question by writing a program

and then checking its type. You may use a functional programming language such as

OCaml or Haskell that contains simply-typed λ-calculus.

(4) (30 points) Let A, B, C and R be some base types. Give λ-terms that have the

following types, respectively.

• A → B → A

• (A → B → C) → (A → B) → A → C.

• A → ((A → R) → R)

• (A → B) → ((A → R) → R) → ((B → R) → R)

• ((A → R) → R) → (A → ((B → R) → R)) → ((B → R) → R)

Check your answer by writing programs and checking their types in OCaml or Haskell.

(5) (30 points) Let us write MR A for (A → R) → R. Then, give a λ-term that has

the following type.

((A → MR B) → MR A) → MR A

Check your answer by writing a program and checking its type in OCaml or Haskell.

(6) (50 points) Let A and B be base types. Then, it is impossible to give a term of

type ((A → B) → A) → A. Explain why. (hint: Peirce’s law)

(7) (50 points) It is known that simply-typed λ-calculus is not powerful to express

Church numerals. Give a concrete example for this.

(8) (110 points) Investigate an extension of simply-typed λ-calculus such as System

F. Summarize its definition and properties such as progress, subjection reduction, and

Curry-Howard correspondence, and give appropriate citations.

(9) (120 points) Prove that every well-typed λ-term has a normal form.

3



IV. (120 points) Write a program that computes a sequence M1 −→β M2 −→β

M3 −→β . . . for a given untyped λ-term M1.

V. (150 points) Write a program for either one of the following problems about

simply-typed λ-calculus.

• Given a term M and a type τ , check whether ∅ ⊢ M : τ holds or not.

• Given a type τ , find M , if any, such that ∅ ⊢ M : τ .

• Given a term M , find a type τ , if any, such that ∅ ⊢ M : τ .

4


