SPARCL

A Language for Partially Invertible Computation

Kazutaka Matsuda »?; ""a:;\

Tohoku University, Japan sl

TOHOKU

IIIIIIIIII

Men g Wan g -% University of
University of Bristol, UK BRISTOL

a system for partially-reversible computation with linear types

SPARCL

A Language for Partially Invertible Computation

//9\

Kazutaka Matsuda ;E;"*g;\
Tohoku University, Japan R o?

TOHOKU

IIIIIIIIII

Men g Wan g -% University of
University of Bristol, UK BRISTOL

Background: Invertible Programming

» Invertibility is common in software development
» compression/decompression
* undo/redo
* serialization/deserialization

» Invertible programming provides
correctness by construction
e What should be the building blocks?

Building Blocks?

» Candidate 1: invertible functions
* injective, thus restrictive
» Candidate 2: partially-invertible functions
» functions become invertible by fixing some arguments
- addition (e.g., An. n + 42 is invertible)
- Huffman encoding
Language for
partially-invertible programming?

Our Answer: SPARCL

» A programming language ...
o for writing invertible functions
» through composing partially-invertible functions

more natural and more expressive

» supported by linear types
- a key to correctness by construction

Running Example

» Differences of adjacent elements in a list

112151213

¥

111 13(-3|1

* 3 pre-processing for image compression
- cf. PNG

Running Example

» Differences of adjacent elements in a list

0 | 1]2]|5]2]3

¥

111 13(-3|1

* 3 pre-processing for image compression
- cf. PNG

Unidirectional Implementation

subs :: [Int] -> [Int]

subs xs = go 0 xs

go :: Int -> [Int] -> [Int]
go n [] []

go N (X:XS) (X = n) : g0 X XS

1121523

Observations

» subs itself is invertible :

» go is not invertible but partially-invertible
* go nis invertible for any fixed (or, static) n

Challenge: dynamic data flow into a static position

subs :: [Int] -> [Int]

subs xs = go 0 xs

go :: Int -> [Int] -> [Int]
gon [] []

go N (X:xs) (X = n) : g0 X XS

Our Approach: SPARCL (1/2)

» A language for partially invertible computation, with
o [inear types (based on 14 [Bernardy+18])
* jnvertible types
- AR; A-typed data to be handled only in invertible ways
- invertible functions as ordinary functions. AR — BR
* a unified f/w for invertible and
partially invertible functions

subs : [Int R —o [Int R
g0 . Int -> [IntJR — [Int]R

Our Approach: SPARCL (2/2)

* pin to bridge the invertible & ordinary worlds
pin : AR —o (A -> BR) — (A @ B)R

- locally converts invertible values to
ordinary ones
* inspired by [Kennedy&Vytiniotis 12]

Handling Ar-typed Values in SPARCL

data Nat = Z | S Nat

add : Nat -> NatR — NatR ifted constructor
add Z y=y SR : NatR —o NatR
add (S x) y = SR (add x y)
mul : Nat -> NatR —o NatR
mul x ZR = /R with 1isZ
mul x (S y)R = add x (mul x y)

A with not . isZ

invertible branching [Lutz 86, Yokoyama+08]

10

subs in SPARCL 1

subs : [Int|]R — [Int R

subs Xxs = go 0 XS

go : Int -> [IntJR — [Int]R
go n NilR = NiIRwith null
go n (Cons x xs)R =
let (x,r)R = pin x (Az.go z xs)
in ConskR (sub n x) r with not . null

sub : Int -> IntR — IntR
cf. pin : AR — (A -> BR) — (A @ B)R

11

subs :: [Int] -> [Int]

subs in SPARCL subs xs = g0 @ xs

go :: Int -> [Int] -> [Int]

subs : [Int]R — [Int]R go n L[] []
subs xs = go @ xs go n (x:xs) = (x - n) : g0 X XS

go : Int -> [IntJR — [Int]R
go n NilR = NiIRwith null
go n (Cons x xs)R =
let (x,r)R = pin x (Az.go z xs)
in ConskR (sub n x) r with not . null

sub : Int -> IntR — IntR
cf. pin : AR o (A -> BR) — (A ® B)R 11

- subs :: [Int] -> [Int]
subs in SPARCL Subs xS = g0 0 xs
go :: Int -> [Int] -> [Int]

subs : [Int]R — [Int]R go n L[] []
subs xs = go @ xs go n (x:xs) = (x - n) : g0 X XS

go : Int -> [IntJR — [Int]R pin converts
go n NilR = NilRwith null |y.1nhtRto z:Int
go n (Cons x xs)R =

let (x,r)R =(pin x (Az.go z Xs)

in ConsR (sub n x) r with not . null

sub : Int -> IntR — IntR
cf. pin : AR o (A -> BR) — (A ® B)R 11

Executing Invertible subs in SPARCL

> fwd subs [1,2,5,2,3]
[1,1,3,-3,1]
> bwd subs [1,1,3,-3,1]
[1,2,5,2,3]

fwd : (AR — BR) -> A -> B
bwd : (AR — BR) -> B -> A

12

Our Paper Includes ...

» Core system AF! of SPARCL

* pased on a linear calculus A% [Bernardy+18]

* inspired by two-staged languages [Moggi 98,...]
» Formal Properties

* type safety & bijectivity
» Larger examples

* Huffman encoding

* Tree rebuilding by program calculation

13

Related Work

» Inversion methods
e Partial inversion
‘Nishida+ 05, Almendros-Jiménez & Vidal 06]
* Semi inversion [Mogensen 05]
» Reversible languages with limited partial invertibility
* reversible updates [Lutz 86,...]
e CoreFun [Jacobsen+18]

14

Related Work

» HOBIT [M&W 18]

*d

nigher-order bidirectiona

programming language

enses [Foster+05] as ordi
*Lens S TisrepresentedasB S -> B T

nary functions

* not with linear types or the pin operator

Conclusion

» SPARCL: @ programming language ...
o for writing invertible functions
» through composing partially-invertible functions

more natural and more expressive

» supported by linear types

- key to correctness by construction

More Info on Implementation
https://bx-lang.github.i10/EXHIBIT/sparcl.html

16

