
PIP Here

SPARCL
A Language for Partially Invertible Computation
Kazutaka Matsuda
Tohoku University, Japan

Meng Wang
University of Bristol, UK

PIP Here

SPARCL
A Language for Partially Invertible Computation
Kazutaka Matsuda
Tohoku University, Japan

Meng Wang
University of Bristol, UK

a system for partially-reversible computation with linear types

PIP Here

Background: Invertible Programming
‣ Invertibility is common in software development

• compression/decompression
• undo/redo
• serialization/deserialization
‣ Invertible programming provides

correctness by construction
• What should be the building blocks?

2

PIP Here

Building Blocks?
‣Candidate 1: invertible functions

• injective, thus restrictive
‣Candidate 2: partially-invertible functions

• functions become invertible by fixing some arguments
- addition (e.g., λn. n + 42 is invertible)
- Huffman encoding

3

Language for
partially-invertible programming?

PIP Here

Our Answer: SPARCL
‣A programming language ...

• for writing invertible functions
• through composing partially-invertible functions

• supported by linear types
- a key to correctness by construction

4

more natural and more expressive

PIP Here

Running Example
‣Differences of adjacent elements in a list

• a pre-processing for image compression
- cf. PNG

5

1 2 5 2 3

1 1 3 -3 1

PIP Here

Running Example
‣Differences of adjacent elements in a list

• a pre-processing for image compression
- cf. PNG

5

1 2 5 2 3

1 1 3 -3 1

0

PIP Here

Unidirectional Implementation

6

subs :: [Int] -> [Int]
subs xs = go 0 xs
go :: Int -> [Int] -> [Int]
go n [] = []
go n (x:xs) = (x - n) : go x xs

1 2 5 2 3

1 1 3 -3 1

PIP Here

Observations
‣subs itself is invertible
‣go is not invertible but partially-invertible

• go n is invertible for any fixed (or, static) n

7

subs :: [Int] -> [Int]
subs xs = go 0 xs
go :: Int -> [Int] -> [Int]
go n [] = []
go n (x:xs) = (x - n) : go x xs

1 2 5 2 3

1 1 3 -3 1

Challenge: dynamic data flow into a static position

PIP Here

Our Approach: SPARCL (1/2)
‣A language for partially invertible computation, with

• linear types (based on [Bernardy+18])
• invertible types

- AR: A-typed data to be handled only in invertible ways
- invertible functions as ordinary functions: AR BR

• a unified f/w for invertible and
partially invertible functions

λq
→

⊸

8

subs : [Int]R [Int]R
go : Int -> [Int]R [Int]R

⊸
⊸

PIP Here

Our Approach: SPARCL (2/2)
• ...
• pin to bridge the invertible & ordinary worlds

- locally converts invertible values to
ordinary ones
• inspired by [Kennedy&Vytiniotis 12]

9

pin : AR (A -> BR) (A B)R⊸ ⊸ ⊗

PIP Here

Handling AR-typed Values in SPARCL

10

data Nat = Z | S Nat
add : Nat -> NatR NatR
add Z y = y
add (S x) y = SR (add x y)
mul : Nat -> NatR NatR
mul x ZR = ZR with isZ
mul x (S y)R = add x (mul x y)
 with not . isZ

⊸

⊸

invertible branching [Lutz 86, Yokoyama+08]

lifted constructor
SR : NatR NatR⊸

PIP Here

subs in SPARCL

11

subs : [Int]R [Int]R
subs xs = go 0 xs

go : Int -> [Int]R [Int]R
go n NilR = NilR with null
go n (Cons x xs)R =
 let (x,r)R = pin x (λz.go z xs)
 in ConsR (sub n x) r with not . null

⊸

⊸

sub : Int -> IntR IntR ⊸
pin : AR (A -> BR) (A B)R⊸ ⊸ ⊗cf.

1 2 5 2 3

1 1 3 -3 1

PIP Here

subs in SPARCL

11

subs : [Int]R [Int]R
subs xs = go 0 xs

go : Int -> [Int]R [Int]R
go n NilR = NilR with null
go n (Cons x xs)R =
 let (x,r)R = pin x (λz.go z xs)
 in ConsR (sub n x) r with not . null

⊸

⊸

sub : Int -> IntR IntR ⊸
pin : AR (A -> BR) (A B)R⊸ ⊸ ⊗cf.

subs :: [Int] -> [Int]
subs xs = go 0 xs
go :: Int -> [Int] -> [Int]
go n [] = []
go n (x:xs) = (x - n) : go x xs

unidir. ver.

PIP Here

subs in SPARCL

11

subs : [Int]R [Int]R
subs xs = go 0 xs

go : Int -> [Int]R [Int]R
go n NilR = NilR with null
go n (Cons x xs)R =
 let (x,r)R = pin x (λz.go z xs)
 in ConsR (sub n x) r with not . null

⊸

⊸

sub : Int -> IntR IntR ⊸
pin : AR (A -> BR) (A B)R⊸ ⊸ ⊗cf.

pin converts
x:IntR to z:Int

subs :: [Int] -> [Int]
subs xs = go 0 xs
go :: Int -> [Int] -> [Int]
go n [] = []
go n (x:xs) = (x - n) : go x xs

unidir. ver.

PIP Here

Executing Invertible subs in SPARCL

12

> fwd subs [1,2,5,2,3]
[1,1,3,-3,1]
> bwd subs [1,1,3,-3,1]
[1,2,5,2,3]

fwd : (AR BR) -> A -> B
bwd : (AR BR) -> B -> A

⊸
⊸

PIP Here

Our Paper Includes ...
‣Core system of SPARCL

• based on a linear calculus [Bernardy+18]
• inspired by two-staged languages [Moggi 98,...]
‣Formal Properties

• type safety & bijectivity
‣Larger examples

• Huffman encoding
• Tree rebuilding by program calculation

λPI
→

λq
→

13

PIP Here

Related Work
‣ Inversion methods

• Partial inversion
[Nishida+ 05, Almendros-Jiménez & Vidal 06]

• Semi inversion [Mogensen 05]
‣Reversible languages with limited partial invertibility

• reversible updates [Lutz 86,...]
• CoreFun [Jacobsen+18]

14

PIP Here

Related Work
‣HOBiT [M&W 18]

• a higher-order bidirectional programming language
- lenses [Foster+05] as ordinary functions

• Lens S T is represented as B S -> B T
• not with linear types or the pin operator

15

PIP Here

Conclusion
‣SPARCL: a programming language ...

• for writing invertible functions
• through composing partially-invertible functions

• supported by linear types
- key to correctness by construction

16

more natural and more expressive

https://bx-lang.github.io/EXHIBIT/sparcl.html
More Info on Implementation

