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Background: Invertible Programming
‣ Invertibility is common in software development 

• compression/decompression 
• undo/redo  
• serialization/deserialization 
‣ Invertible programming provides  

correctness by construction 
• What should be the building blocks? 
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Building Blocks?
‣Candidate 1: invertible functions 

• injective, thus restrictive  
‣Candidate 2: partially-invertible functions 

• functions become invertible by fixing some arguments 
- addition (e.g., λn. n + 42 is invertible) 
- Huffman encoding
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Language for  
partially-invertible programming?
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Our Answer: SPARCL
‣A programming language ... 

• for writing invertible functions  
• through composing partially-invertible functions 

• supported by linear types 
- a key to correctness by construction
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more natural and more expressive
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Running Example
‣Differences of adjacent elements in a list 

• a pre-processing for image compression 
- cf. PNG  
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Running Example
‣Differences of adjacent elements in a list 

• a pre-processing for image compression 
- cf. PNG  
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Unidirectional Implementation
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subs :: [Int] -> [Int] 
subs xs = go 0 xs 
go :: Int -> [Int] -> [Int] 
go n []     = [] 
go n (x:xs) = (x - n) : go x xs
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Observations
‣subs itself is invertible 
‣go is not invertible but partially-invertible 

• go n is invertible for any fixed (or, static) n 
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subs :: [Int] -> [Int] 
subs xs = go 0 xs  
go :: Int -> [Int] -> [Int] 
go n []     = [] 
go n (x:xs) = (x - n) : go x xs
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Challenge: dynamic data flow into a static position
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Our Approach: SPARCL (1/2)
‣A language for partially invertible computation, with 

• linear types (based on  [Bernardy+18]) 
• invertible types  

- AR: A-typed data to be handled only in invertible ways 
- invertible functions as ordinary functions:  AR  BR 

• a unified f/w for invertible and 
partially invertible functions

λq
→

⊸
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subs : [Int]R  [Int]R 
go   : Int -> [Int]R  [Int]R

⊸
⊸
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Our Approach: SPARCL (2/2)
• ... 
• pin to bridge the invertible & ordinary worlds  

- locally converts invertible values to  
ordinary ones  
• inspired by [Kennedy&Vytiniotis 12]
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pin : AR  (A -> BR)  (A  B)R⊸ ⊸ ⊗
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Handling AR-typed Values in SPARCL
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data Nat = Z | S Nat 
add : Nat -> NatR  NatR 
add Z     y = y  
add (S x) y = SR (add x y) 
mul : Nat -> NatR  NatR 
mul x ZR     = ZR with isZ 
mul x (S y)R = add x (mul x y) 
               with not . isZ 

⊸

⊸

invertible branching [Lutz 86, Yokoyama+08]

lifted constructor 
SR : NatR  NatR⊸
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subs in SPARCL
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subs : [Int]R  [Int]R 
subs xs = go 0 xs 

go : Int -> [Int]R  [Int]R 
go n NilR         = NilR with null 
go n (Cons x xs)R =  
  let (x,r)R = pin x (λz.go z xs) 
  in ConsR (sub n x) r with not . null

⊸

⊸

sub : Int -> IntR  IntR  ⊸
pin : AR  (A -> BR)  (A  B)R⊸ ⊸ ⊗cf.
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subs in SPARCL
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subs : [Int]R  [Int]R 
subs xs = go 0 xs 

go : Int -> [Int]R  [Int]R 
go n NilR         = NilR with null 
go n (Cons x xs)R =  
  let (x,r)R = pin x (λz.go z xs) 
  in ConsR (sub n x) r with not . null

⊸

⊸

sub : Int -> IntR  IntR  ⊸
pin : AR  (A -> BR)  (A  B)R⊸ ⊸ ⊗cf.

subs :: [Int] -> [Int] 
subs xs = go 0 xs 
go :: Int -> [Int] -> [Int] 
go n []     = [] 
go n (x:xs) = (x - n) : go x xs

unidir. ver.
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subs in SPARCL
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subs : [Int]R  [Int]R 
subs xs = go 0 xs 

go : Int -> [Int]R  [Int]R 
go n NilR         = NilR with null 
go n (Cons x xs)R =  
  let (x,r)R = pin x (λz.go z xs) 
  in ConsR (sub n x) r with not . null

⊸

⊸

sub : Int -> IntR  IntR  ⊸
pin : AR  (A -> BR)  (A  B)R⊸ ⊸ ⊗cf.

pin converts 
x:IntR to z:Int

subs :: [Int] -> [Int] 
subs xs = go 0 xs 
go :: Int -> [Int] -> [Int] 
go n []     = [] 
go n (x:xs) = (x - n) : go x xs

unidir. ver.
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Executing Invertible subs in SPARCL
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> fwd subs [1,2,5,2,3]  
[1,1,3,-3,1] 
> bwd subs [1,1,3,-3,1] 
[1,2,5,2,3]

fwd : (AR  BR) -> A -> B  
bwd : (AR  BR) -> B -> A

⊸
⊸
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Our Paper Includes ...
‣Core system  of SPARCL 

• based on a linear calculus  [Bernardy+18] 
• inspired by two-staged languages [Moggi 98,...] 
‣Formal Properties  

• type safety & bijectivity 
‣Larger examples 

• Huffman encoding 
• Tree rebuilding by program calculation

λPI
→

λq
→
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Related Work
‣ Inversion methods  

• Partial inversion  
[Nishida+ 05, Almendros-Jiménez & Vidal 06] 

• Semi inversion [Mogensen 05] 
‣Reversible languages with limited partial invertibility 

• reversible updates [Lutz 86,...] 
• CoreFun [Jacobsen+18]
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Related Work
‣HOBiT [M&W 18] 

• a higher-order bidirectional programming language 
- lenses [Foster+05] as ordinary functions 

• Lens S T is represented as B S -> B T 
• not with linear types or the pin operator
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Conclusion
‣SPARCL: a programming language ... 

• for writing invertible functions  
• through composing partially-invertible functions 

• supported by linear types 
- key to correctness by construction
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more natural and more expressive

https://bx-lang.github.io/EXHIBIT/sparcl.html
More Info on Implementation


