FIIPPr

A Prettier Invertible Printing System

Kazutaka Matsuda (Univ. of Tokyo)
Meng Wang (Chalmers Univ. of Tech.)

March 19th, 2013 @ESOP

FIiPpr in 1 Slide

» A Prettier Invertible Printing System

e takes a pretty-printer
- written with Wadler’s pretty-printing
combinators [Wadler 03]

® returns a parser
- based on grammar-based inversion [M.+10]

Background

» To implement a programming lang,

we often write ...
® 3 parser

1 parse 6.b

® 3 pretty-printer

Desired Property

» A pretty-printed string must be
correctly parsed

a ppg 3 parse a

parse (ppr ast) = ast

Problem

» Separately-writing parser/ppr is ...
® tedious
- We have to write and maintain two programs

® error-prone
- A pretty-printed string may not be correctly
parsed

parse (ppr ast) # ast

Problem

» Separately-writing parser/ppr is ...

® tedious
- We have to write and maintain two programs

® error-prone

*Main> '\n" :: Int In GHC 7.4.1

<interactive>:93:1:
Couldn't match expected type "Int' with actual type " [Char]'

In the expression: = ¢: Int
In an equation for "it': it = "" :: Int

parse (ppr ast) # ast

Our Goal

» Derive a parser from a pretty-printer
by program inversion [Gries 81,...]

parse (ppr ast) = ast
inverse

Why Pretty-Printing?

» Pretty-printing Is important
e |t is the only way for a compiler to

communicate to its users
- Prettier means more productive

» Pretty-printing Is more creative

e More control on layouting is needed
- indentation, spacing, putting parens, ...

We do want to write pretty-printers!

Issue

» Naively-derived parsers are useless

_ ppr]

can only parse
“pretty” strings

[parse

Additional Info

» Required to derive useful parsers

Additional Info of
r
[PP -IJO(“non-pretty” but valid strings

[parse j

Our Proposal: FliPpr

» A Prettier Invertible Printing System

e takes a pretty-printing program
- written with Wadler’s pretty-printing
combinators [Wadler 03]
- together with additional info for parsing

e returns a parser as a CFG with actions
- based on grammar-based inversion [M.+10]

10

Advantages

» Users define pretty-printers
(fine-grained control)
» FliPpr can reuse existing efficient

algorithms and implementations
® For pretty-printers
- [Wadlero3s, Swisstra&Chitilog, Kiselyov13s,...]

® FOr parsers
- GLR, Early, [Frost+08], [Might+11], ...

11

Agenda

» Input of FliPpr

e \Wadler’s Pretty-Printing Combinators
e Additional Information for Parsing

» Quick Overview of FliPpr
» Related Work
» Conclusion

12

Wadler's Combinators

»text :: String -» Doc

» (<>) :: Doc -» Doc -» Doc
»line :: DocC

P nest :: Int » Doc -» Doc
» group :: Doc - Doc

Doc: A smart datatype for pretty-printing

13

A Pretty Printer

data AST = One
Sub AST AST
Div AST AST

14

A Pretty Printer

data AST = One
Sub AST AST
Div AST AST

ppr One = text "1"

14

A Pretty Printer

data AST = One
Sub AST AST
Div AST AST

ppr One = text "1"
ppr (Sub x y) =
ppr X <> nest 2 (
line <> text "-" <> text " " <> ppr

Y)

14

A Pretty Printer

data AST = One
Sub AST AST
Div AST AST

ppr One = text "1"
ppr (Sub x y) =
ppr X <> nest 2 (

line <> text "-" <> text " " <> ppr
ppr (Div x y) =
ppr X <> nest 2 (
line <> text "/" <> text " " <> ppr

Y)

Y)

)

14

A Pretty Printer

data AST = One
rec level
Sub AST AST P 6
Div AST AST prec level 7

]

ppr One = text "1"
ppr (Sub x y) =
ppr X <> nest 2 (

line <> text "-" <> text " " <> ppr
ppr (Div x y) =
ppr X <> nest 2 (
line <> text "/" <> text " " <> ppr

Y)

Y)

)

14

A Pretty Printer

data AST = One
rec level
Sub AST AST P 6
Div AST AST prec level 7

ppr One = text "1"
ppr (Sub x y) =
ppr X <> nest 2 (

line <> text "-" <> text " " <> ppr V)
ppr (Div x y) =
ppr X <> nest 2 (
line <> text "/" <> text " " <> ppr y))

ifParens b x = if b then parens x else X
parens x = text "(" <> x <> text ")"

14

A Pretty Printer

data AST = One
rec level
Sub AST AST P 6
Div AST AST prec level 7

pprMain X = ppr 5 X
ppr 1 One = text "1°"

ppr 1 (Sub x y) = ifParens (1i>=6) (
ppr 5 X <> nest 2 (
line <> text "-" <> text " " <> ppr 6 y)
ppr 1 (Div x y) = i1fParens (1>=7) (
ppr 6 X <> nest 2 (
line <> text "/" <> text " " <> ppr 7 y))

ifParens b x = if b then parens x else X
parens x = text "(" <> x <> text ")"

14

Smart Layouting

pprMain X = ppr 5 X
ppr 1 One = text "1°"
ppr 1 (Sub x y) =
ppr 5 X <> nest 2
line <> text "-"
ppr 1 (Div x y) =
ppr 6 X <> nest 2
line <> text "/"

(

<> text

(

<> text

1fParens (1>=6) (

<> ppr 6 Yy)

1fParens (1>=7) (

)

pprMain (Sub One

One)

<> ppr 7 Yy)

15

A
group X chooses between

Smart Lay

pprMain X = ppr 5 X

ppr 1 One = text "1°"

ppr 1 (Sub x y) = i1ifParens (1>=6) (group (
ppr 5 X <> nest 2 (

e lines as (single) spaces

line <> text "-" <> text " " <> ppr 6 y)))

ppr 1 (Div x y) = 1fParens (1>=7) (group (
ppr 6 X <> nest 2 (

e 1ines as (indented) newlines

line <> text "/" <> text " " <> ppr 7 y)))

pprMain (Sub One One) 1 - 1|

15

Additional Info

» Additional info is required to parse
"non-pretty” strings

[ppr

~

[parse J

.
How we write
the additional info?

16

ldeas

» Reinterpretation of 1ine
» Biased-choice operator <+ for
additional-information

17

Observation

» Many ways to interpret 1ines

e nest inserts indentation after line
e group can replace a 1ine with a space

ppr 1 (Sub x y) = ifParens (1>=6) (group (
PpL 2. X <> mest 2 ({
. > text n_n S text "o S ppr 6 y)))

pprMain (Sub One One)

18

Reinterpret 1inesS

» 1ines are interpreted as whitespaces
INn parsing

pprMain (Sub One One) ﬁf I l

The pretty-printer knows

these non-pretty strings ‘ I
U ‘-.?i .

A derived parser can parse
these strings

19

Still Not En

pprMain (Sub One One) Efl

Uncovered non-pretty strings o

we want to parse

ppr 1 (Sub x y) =
. text "-" <> text " "
<> ppr 6 Vy ..

20

Biased Choice: <+

» <+ for additional info

e x <+ yequalsto xin pretty-printing
- No need to change pretty-printing system
e x <+ vy alsoconveys theinfo of y

ppr p = pretty <+ nonpretty

ppr knows both pretty and nonpretty
are related to p

21

Original Pretty-Printer

pprMain X = ppr 5 X

ppr 1 One = text "1"
ifParens (1>=6) (group (

ppr 1 (Sub x y) =
ppr 5 X <> nest 2
line <> text "-"

(

<> text n n

<> ppr 6 Yy)))

22

Original Pretty-Printer

pprMain X ppr 5 X

ppr 1 One = text "1"

ppr 1 (Sub x y) = 1fParens (1>=6) (group (
ppr 5 X <> nest 2 (

line <> text "-=-" <> text " " <> ppr 6 y)))

manyParens X = X <+ parens (manyParens X)
space = (text " " <+ text "\n") <> nil
nil = text "" <+ space

23

Modified Pre

Extra Parens
pprMain X = ppr 5 X

ppr 1 X = manyParens (aux 1 X)
aux 1 One = text "1"

aux 1 (Sub x y) = ifParens (1>=6) (group (
ppr 5 X <> nest 2 (
line <> text "-" <> space <> ppr 6 Vy)))

manyParens X = X <+ parens (manyParens X)
space = (text " " <+ text "\n") <> nil
nil = text "" <+ space

24

Agenda

» Input of FliPpr

» Quick Overview of FliPpr
» Related Work

» Conclusion

25

Architecture of FliPpr

[linear ppr+o j

*Program Trans.

4 N
linear&treeless pwadlergo]
nondet. printer
,

Grammar-based Inversion
[M.+10]

[CFG with Actions |

_

26

Architecture of FliPpr

: linear ppr+o

__Program Trans.

~

.
linear&treeless pwadlergo]
nondet. printer

Grammar-based Inversion
[M.+10]

[CFG with Actions |

_

26

Input Program

» 1st-order linear functional programs

with Wadler’s combinators

e restrictions:
- limited nested calls (see paper)
- distinguished statically-computed data

pprMain X = ppr 5 X
ppr 1 X = manyParens (aux 1 X)
aux 1 One = text "1"
aux 1 (Sub x y) = ifParens (1>=6) (group (
ppr 5 X <> nest 2 (
line <> text "-" <> space <> ppr 6 vy)))

Architecture of FliPpr

[linear ppr+o j
FUSIOI’]/.Pa rtial Evaluation
e | FOFgetting Layouts
)

.
linear&treeless pwadlergo]
nondet. printer

Grammar-based Inversion
[M.+10]

[CFG with Actions |

_

28

Fusion/Partial Eval

pprMain X = ppr 5 X
ppr 1 X = manyParens (aux 1 X)
aux 1 One = text "1"

aux 1 (Sub x y) = ifParens (i1>=6) (group (
ppr 5 X <> nest 2 (
line <> text "-" <> space <> ppr 6 y)))

manyParens x = X <+ parens (manyParens Xx)

parens x = text "(" <> nil <> x <> nil <> text ")"

pprMain x = ppr5 x '

ppr5 X = auxb X
<+ text "(" <> nil <> ppr5 x <> nil <> text ")"
aux5 One = text "1"
aux5 (Sub x y) =
group (ppr5 x <> nest 2 (
line <> text "-" <> space <> ppré6 y))

29

Forgetting Layouts

» Clarify reinterpretation of 1ines by
program transformations

Nondeterministic
choice

teXt IISII llsll
X <>y X ++ vy
line > space

nest k X X

group X X

X <+ vy X 72y
space = (" " 2 "\n") ++ nil
nil = "" ? space

30

Example

pprMain x = ppr5 x
ppr5 X = aux5 X
<+ text "(" <> nil <> ppr5 x <> nil <> text ")"
aux5 One = text "1"
aux5 (Sub x y) =
group (ppr5 x <> nest 2 (
line <> text "-" <> space <> ppr6 y))

i

pprMain x = ppr5 x

ppr5 x = aux5 x ? "(" ++ nil ++ ppr5 x ++ nil ++ ")"
aux5 One = "1"
aux5 (Sub x y) =

ppr5 x ++ space ++ "-" ++ space ++ ppr6 y

31

Architecture of FliPpr

[linear ppr+o j

Program Trans. An Inverse of a function
in a certain class can be

N~ | given by a parser

.
linear&treeless pwadlergo]
nondet. printer

k e ,,...»,v,, POp— .

Grammar-based Inve rsion

[CFG J

32

Example

pprMain X = ppr5 x

ppr5 x = aux5 x ? "(" ++ nil ++ ppr5 x ++ nil ++ ")"
aux5 One = "1"
aux5 (Sub x y) =

ppr5 x ++ space ++ "-" ++ space ++ ppr6 y

PprMain -» Ppr5 { S1 }

Ppr5 -» Auxb5 { S1 }
| "(" Nil Ppr5 Nil ")" { $3 }
Aux5 » "1" { One }
Aux5 -» Ppr5 Space "-" Space Ppr6 { Sub $1 $5 }

33

Summary

pprMain X = ppr 5 X
ppr 1 X = manyParens (aux 1 X)
aux 1 One = text "1"
aux 1 (Sub x y) = ifParens (i1>=6) (group (
ppr 5 X <> nest 2 (
line <> text "-" <> space <> ppr 6 y)))

manyParens x = X <+ parens (manyParens Xx)

parens x = text "(" <> nil <> x <> nil <> text ")"

PprMain » Ppr5 { S1 }
Ppr5 -» Aux5 { S1 }
| "(" Nil Ppr5 Nil ")" { $3 }
Auxb5 » "1" { One }
Aux5 -» Ppr5 Space "-" Space Ppr6 { Sub $1 $5 }

34

In the Paper ...

» Formal definition of input programs

e Types for binding-time analysis

e Tiered-treelessness
p Extensions

ppr (Var X)
ppr (Int X)

text (x as [a-z]+)
text (i1toa x as [0-9]+)

» An Involved Example
e models first-order functional programs

35

Agenda

» Input of FliPpr

» Quick Overview of FliPpr
» Related Work

» Conclusion

Related Work

» Ppr/parser from one description

nvertible Syntax Description
‘Rendel&Ostermannio]

BNFC-meta [Duregard&Janssonii]

® Syn [Boultongé]

No natural and fine control
on pretty-printing

37

Conclusion

» FliPpr
e takes a pretty-printing program
- written with Wadler’s pretty-printing

combinators [Wadler 03]
- together with additional info for parsing

e returns a parser as a CFG with actions
- based on grammar-based inversion [M.+10]

http://www-kb.is.s.u-tokyo.ac.jp/~kztk/Fl1liPpr/

38

http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/
http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

Future Work

Application A —> —> Application B

» Solution to more general situation
® A sender uses a certain representation
- a3bl for aaab in runlength encoding
®* A recelver must accept more

representations

- a3bl, a2albl, ala?2bl,alalalbl for aaab
in runlength encoding

39

Future Work

» Enhance usability

e More flexible pretty-printer descriptions
- higher-order functions in surface lang
- smart way to handle “lexing” issues

® [njectivity analysis
e Grammars beyond CFG

— offside rules
e Haskell, Python, YaML

40

41

Conceptual Change

ppr :: AST - Doc

Original ours

Doc Is ... Doc is ...
Set of Pretty Strings | Set of All Valid Strings
|

|
A Smart Chooser A Smart Chooser

42

Related Work

» Quotient Lenses [Foster et al. 08]

e Extra spaces and parens can be viewed as
a quotient.

e No direct connection to efficient

implementations
- Pretty-printing

e [Wadleros, Swisstra&Chitilog, Kiselyov13s,...]
- Parsing

e [R-k, GLR, Early, ...

e [Frost et al. 08]

43

44

