Foundations of Software Science (ソフトウェア基礎科学) Week 5-6, 2017 Instructors: Kazutaka Matsuda and Eijiro Sumii

Typed λ -Calculus

Definition (λ -terms with Sums and Products). The set of *terms* is defined by the following BNF.

$$\begin{array}{rcl}M,N & ::= & x \mid M \mid N \mid \lambda x.M \\ & \mid & (M,N) \mid \pi_1 M \mid \pi_2 M \\ & \mid & \mathsf{InL} \mid M \mid \mathsf{InR} \mid M \mid \mathbf{case} \mid M \; \mathbf{of} \; (x.N_1) \; (y.N_2) \end{array} \qquad \Box$$

Intuitively, (M, N) makes the pair of M and N, $\pi_1 M$ extracts the first component of the pair M, and $\pi_2 M$ extracts the second component. Expressions $\ln M$ and $\ln R N$ are injections: $\ln M$ assign the tag $\ln L$ to M and $\ln R M$ assign the tag $\ln R$ to M. These tags are used in the caseanalysis performed by **case** M of $(x.N_1)$ $(y.N_2)$: if M is tagged left as $\ln M$, then it is reduced to $N_1[M'/x]$, and if M is tagged right as $\ln R M'$, the it is reduced to $N_2[M'/x]$.

Formally, we have additional reduction rules

$$\frac{\overline{\pi_1(M,N) \longrightarrow M}}{\operatorname{\mathbf{case}}(\operatorname{InL} M) \operatorname{\mathbf{of}}(x.N_1)(y.N_2) \longrightarrow N_1[M/x]} \quad \frac{\overline{\pi_2(M,N) \longrightarrow N}}{\operatorname{\mathbf{case}}(\operatorname{InR} M) \operatorname{\mathbf{of}}(x.N_1)(y.N_2) \longrightarrow N_2[M/y]}$$

along with the rules to reduce subterms.

$$\begin{array}{c} \frac{M \longrightarrow M'}{(M,N) \longrightarrow (M',N)} & \frac{N \longrightarrow N'}{(M,N) \longrightarrow (M,N')} & \frac{M \longrightarrow M'}{\pi_1 M \longrightarrow \pi_1 M'} & \frac{M \longrightarrow M'}{\pi_2 M \longrightarrow \pi_2 M'} \\ \\ \frac{M \longrightarrow M'}{\ln \mathbb{L} \ M \longrightarrow \ln \mathbb{L} \ M'} & \frac{M \longrightarrow M'}{\ln \mathbb{R} \ M \longrightarrow \ln \mathbb{R} \ M'} & \frac{M \longrightarrow M'}{\operatorname{case} \ M \ \mathrm{of} \ (x.N_1) \ (y.N_2) \longrightarrow \operatorname{case} \ M' \ \mathrm{of} \ (x.N_1) \ (y.N_2)} \\ \\ & \frac{N_1 \longrightarrow N'_1}{\operatorname{case} \ M \ \mathrm{of} \ (x.N_1) \ (y.N_2) \longrightarrow \operatorname{case} \ M \ \mathrm{of} \ (x.N'_1) \ (y.N_2)} \\ \\ & \frac{N_2 \longrightarrow N'_2}{\operatorname{case} \ M \ \mathrm{of} \ (x.N_1) \ (y.N'_2)} \end{array}$$

There are terms, such as $\pi_1(\lambda x.x)$ and $((\lambda x.x), (\lambda y.y))(\lambda z.z)$, that are in normal form but appear intuitively meaningless. We formalize "meaningful" normal form as *values* below (mutually defined with the set of *neutral terms*).

$$V ::= \lambda x.V \mid (V_1, V_2) \mid \text{InL } V \mid \text{InR } V \mid W$$
$$W ::= x \mid \pi_1 W \mid \pi_2 W \mid \text{case } W \text{ of } (x.V_1) (y.V_2)$$

We call a term *stuck* if it is in normal form but not a value. Accordingly, we say that a term M gets stuck if $M \longrightarrow^* M'$ for some stuck term M'.

Goal -

Find a way to tell that a term will not get stuck before trying to reduce it.

Why we have pairs and sums explicitly? One reason is to introduce clearly-meaningless terms like π_1 ($\lambda x.x$) with no "meaningful" way to evaluate them. Recall that everything is a function in the untyped λ -calculus. The other reason is that simple types discussed below are not powerful enough to type Church-encoded data.

Simple Types

The idea is to classify terms by which kind of values they evaluates to. For example, if we know that $\lambda x.x$ evaluates to a function, we know that $\pi_1(\lambda x.x)$ is meaningless because it tries to extract the first component of a function (this is clearly impossible).

Definition. The set of *(simple) types* is defined as follows.

$$\tau ::= B \mid \tau_1 \times \tau_2 \mid \tau_1 + \tau_2 \mid \tau_1 \to \tau_2 \qquad \Box$$

Here, B represents a base type such as Int or Bool, $\tau_1 \times \tau_2$ represents the product type of τ_1 and τ_2 , $\tau_1 + \tau_2$ represents the sum type of τ_1 and τ_2 , and $\tau_1 \to \tau_2$ represents the function type from τ_1 to τ_2 . Very roughly speaking, a term belongs to the type $\tau_1 \times \tau_2$ will be reduced to a pair whose first and second components belong to τ_1 and τ_2 respectively, and a term belongs to the type $\tau_1 + \tau_2$ will be reduced to a term that is either injected left from a term in τ_1 or injected right from a term in τ_2 .

Now we define how to give a term a type . A type environment is a mapping from variables to types, which is used to assign types to free variables in a term. A typing judgment $\Gamma \vdash M : \tau$, which is read that under typing environment Γ term M has type τ , is defined by the following typing rules.

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \operatorname{T-Var} \qquad \frac{\Gamma \vdash M : \tau' \to \tau}{\Gamma \vdash M N : \tau} \operatorname{T-App} \qquad \frac{\Gamma \uplus \{x \mapsto \tau_1\} \vdash M : \tau_2}{\Gamma \vdash \lambda x.M : \tau_1 \to \tau_2} \operatorname{T-Aps} \\
\frac{\Gamma \vdash M : \tau_1 \quad \Gamma \vdash N : \tau_2}{\Gamma \vdash (M, N) : \tau_1 \times \tau_2} \operatorname{T-Pair} \qquad \frac{\Gamma \vdash M : \tau_1 \times \tau_2}{\Gamma \vdash \pi_1 M : \tau_1} \operatorname{T-Fsr} \qquad \frac{\Gamma \vdash M : \tau_1 \times \tau_2}{\Gamma \vdash \pi_2 M : \tau_2} \operatorname{T-SnD} \\
\frac{\Gamma \vdash M : \tau_1}{\Gamma \vdash \operatorname{InL} M : \tau_1 + \tau_2} \operatorname{T-LeFT} \qquad \frac{\Gamma \vdash M : \tau_2}{\Gamma \vdash \operatorname{InR} M : \tau_1 + \tau_2} \operatorname{T-RiGHT} \\
\frac{\Gamma \vdash M : \tau_1 + \tau_2 \quad \Gamma \uplus \{x \mapsto \tau_1\} \vdash N_1 : \tau' \quad \Gamma \uplus \{y \mapsto \tau_2\} \vdash N_2 : \tau'}{\Gamma \vdash \operatorname{case} M \text{ of } (x.N_1) (y.N_2) : \tau'} \operatorname{T-Case}$$

Above, we name each inference rule for convenience. Here, \uplus represents disjoint union. We assumed that a term M of $\Gamma \vdash M : \tau$ is appropriately α -renamed so that every $\Gamma \uplus \{\ldots\}$ above is defined. A term M is called *well-typed* (under Γ) if $\Gamma \vdash M : \tau$ holds for some τ , and otherwise it is called *ill-typed*. Notice that $\emptyset \vdash M : \tau$ implies that M is closed. For this set of the inference rules, which rule should be applied to a term M is uniquely determined by the form of M. The set of rules satisfying this condition is sometimes called *syntax-directed*. An example of a well-typed term is $\lambda x.(x, x)$, which has the following derivation tree for any type τ .

$\overline{\{x\mapsto \tau\}\vdash x:\tau}$	$\overline{\{x\mapsto\tau\}\vdash x:\tau}$
$\overline{\{x\mapsto\tau\}\vdash(x,x):\tau\times\tau}$	
$\overline{\emptyset \vdash \lambda x.(x.x)}$	$: \tau \to \tau \times \tau$

An example of an ill-typed term is $\pi_1(\lambda x.x)$.

We state that well-typed closed normal forms are values.

<u>Theorem</u> ((An Equivalent form of) Progress). For a term M, if $\emptyset \vdash M : \tau$ for some τ and M is in a normal form, M is a value.

Proof. Induction on the typing derivation of $\emptyset \vdash M : \tau$.

Type Safety

Type safety is a statement something like "well-typed programs do not go wrong". Here, since we are interested in whether a term will get stuck or not, the type safety for our case is that "well-typed programs do not get stuck". This property is usually proved by proving the two properties:

- Subject reduction (or, preservation) is a statement that reductions preserve types. Thus, well-typed terms are reduced to well-typed terms.
- *Progress* is a statement that a well-typed term is not stuck, i.e., either a value or reducible. In other words, well-typed normal forms are values, which already we have proved.

Having the two properties, we can prove the type safety by a simple induction.

In advance to stating the subject reduction property, we introduce an important lemma below.

Lemma (Substitution Lemma). Let M and N be terms. If $\Gamma \uplus \{x \mapsto \tau\} \vdash M : \tau'$ and $\Gamma \vdash N : \tau$ for some Γ , τ and τ' then, $\Gamma \vdash M[N/x] : \tau'$ holds.

Proof. Induction on the derivation of $\Gamma \uplus \{x \mapsto \tau\} \vdash M : \tau'$.

We are now ready to prove the subject reduction.

<u>Theorem</u> (Subject Reduction). Let M be a term such that $\Gamma \vdash M : \tau$ for some Γ and τ . If $M \longrightarrow M'$, then $\Gamma \vdash M' : \tau$ holds.

Proof. Induction on the derivation of $M \longrightarrow M'$. We use the substitution lemma when substitution occurs.

<u>Theorem</u> (Type Safety). For a term M such that $\emptyset \vdash M : \tau$ for some τ , if $M \longrightarrow^* M'$ for some M', M' is not stuck.

Proof. By the subject reduction property and by the induction on $M \longrightarrow^* M'$, we can prove that $\Gamma \vdash M' : \tau$ holds. Then, by the progress property, M' is not stuck.

Other Important Properties

<u>Theorem</u> (Decidability of Type Checking). Given a type environment Γ , a term M and a type τ , checking whether $\Gamma \vdash M : \tau$ holds or not is decidable.

<u>Theorem</u> (Strong Normalization). For a well-typed term M, there is no infinite sequence of $M \longrightarrow M' \longrightarrow M'' \longrightarrow \cdots$.

In other words, every well-typed term has a normal form. This also means that the simply-typed λ -calculus is not Turing complete.