Why We Learn Untyped and Typed λ－Calculus？

－a model of computation，
－the simplest programming language with a type system，and
－a formal proof system for the intuitionistic propositional logic．

Untyped λ－Calculus

Definition（ λ－terms）．The set of λ－terms is defined by the following BNF．

$$
M, N::=x|M N| \lambda x . M
$$

A λ－term is sometimes called a λ－expression．An expression of the form of M is called （function）application，and an expression of the form of $\lambda x . M$ is called λ－abstraction．

Example（s）．$\lambda x \cdot x, \lambda x \cdot y, \lambda x .(x x) .(\lambda x .(x x))(\lambda x .(x x))$ are examples of λ－terms．
Intuitively，$\lambda x . M$ represents a function．For example，the function f defined by $f(x)=x+3$ is represented as $\lambda x \cdot x+3$ ，where + and 3 are corresponding λ－terms．

Convention

Function application is left－associative，and binds tighter than abstractions．For example， $M_{1} M_{2} M_{2}$ means $\left(M_{1} M_{2}\right) M_{3}$ ，and $\lambda x . x \quad x$ means $\lambda x .(x x)$ ．It is simplest to follow the convention that N in（ $M N$ ）must be parenthesized unless N is a variable．A term of the form of $\lambda x_{1} \cdot \lambda x_{2} \ldots \lambda x_{n} . M$ is sometimes written as $\lambda x_{1} x_{2} \ldots x_{n} . M$ ．

Occurrence and Subterms

A λ－term may contain multiple occurrences of the same term that have different roles．For example， a term $x(\lambda x . x(\lambda x . x))$ contains three occurrences of the same variable x ，which we want to distinguish as we will show later．A way to formalize occurrences is to use paths in the tree representation of a λ－term．

For a set S ，we write by S^{*} the set of sequences of S elements．That is，an element of S^{*} is a sequence $s_{1} s_{2} \ldots s_{n}$ for some n where $s_{i} \in S$ for all $1 \leq i \leq n$ ．The empty sequence is written by ϵ ．

Definition．For a λ－term M ，the set of positions $\mathcal{P} \mathcal{O S}(M) \subseteq\{1,2\}^{*}$ is defined inductively as follows．

$$
\begin{aligned}
& \mathcal{P O S}(x)=\{\epsilon\} \\
& \mathcal{P O S}(M N)=\{\epsilon\} \cup\{1 p \mid p \in \mathcal{P O S}(M)\} \cup\{2 p \mid p \in \mathcal{P O S}(N)\} \\
& \mathcal{P O S}(\lambda x . M)=\{\epsilon\} \cup\{1 p \mid p \in \mathcal{P O S}(M)\}
\end{aligned}
$$

Definition. For a λ-term M and a position $p \in \mathcal{P O S}(M)$, a subterm $\left.M\right|_{p}$ at p is defined inductively as follows.

$$
\begin{array}{ll}
\left.M\right|_{\epsilon} & =M \\
\left.\left(M_{1} M_{2}\right)\right|_{i p} & =\left.M_{i}\right|_{p} \quad(i=1,2) \\
\left.(\lambda x . M)\right|_{1 p} & =\left.M\right|_{p}
\end{array}
$$

We also say that M occurs at p in N if M is a subterm of N at p. We merely say that M is a subterm of N or M occurs in N if $M=\left.N\right|_{p}$ for some p. Note that x does not occur in $\lambda x . y$. Formally, an occurrence of a term M in N is a pair (M, p) such that $M=\left.N\right|_{p}$, but we do not explicitly use such pairs in what follows.

Free and Bound Variables

Definition. For a λ-term M, a variable x that occurs at p in M is called bound if there is a subterm $\lambda x . M^{\prime}$ in M at p^{\prime} and $p=p^{\prime} p^{\prime \prime}$ for some $p^{\prime \prime}$ (i.e., $\lambda x . M^{\prime}$ contains the occurrence of x). Otherwise, the variable occurrence is called free.

Example(s). The λ-term $(\lambda x . x) x$ has two occurrences of x : the left one at 11 is bound and the other at 2 is free.

Exercise. Underline the bound occurrences of variables in $(\lambda x . x(\lambda y . x y) y)(\lambda z . z) z$.
Definition. For a λ-term M, the set of free variables $\mathrm{FV}(M)$ of M is the set of variables that occur free in M. The set can be defined inductively as follows.

$$
\begin{array}{ll}
\operatorname{FV}(x) & =\{x\} \\
\operatorname{FV}(\lambda x . M) & =\mathrm{FV}(M) \backslash\{x\} \\
\operatorname{FV}(M N) & =\mathrm{FV}(M) \cup \mathrm{FV}(N)
\end{array}
$$

A term M is called closed if M has no free variables, i.e., $\mathrm{FV}(M)=\emptyset$. Closed λ-terms are sometimes called combinators. Famous combinators include $I \stackrel{\text { def }}{=} \lambda x . x, K \stackrel{\text { def }}{=} \lambda x . \lambda y . x, S \xlongequal{\text { def }}$ $\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z), \Delta \stackrel{\text { def }}{=} \lambda x \cdot x x$, and Y that will be introduced later.

Substitution and α-equivalence

Intuitively, a substitution $M[N / x]$ replaces all the free occurrences of x in M with N. However, naively doing so is problematic when N contains free variables. Let us consider two λ-terms $\lambda x . z x$ and $\lambda y . z y$. We do not want to distinguish two terms as $f(x)=z+x$ and $f(y)=z+y$ represent the same function. However, naively replacing z with y makes the two function different. Thus, we define substitution so that it renames bound variables if necessary, as follows.

Definition. For a variable x and λ-terms M and N, we define a (capture-avoiding) substitution of x in M to $N, M[N / x]$, inductively as follows.

$$
\begin{aligned}
y[N / x] & = \begin{cases}N & (x=y) \\
y & (x \neq y)\end{cases} \\
(\lambda y \cdot M)[N / x] & = \begin{cases}\lambda y \cdot M & (x=y) \\
\lambda y \cdot M[N / x] & (x \neq y \wedge y \notin \mathrm{FV}(N)) \\
(\lambda z \cdot M[z / y])[N / x] & (x \neq y \wedge y \in \mathrm{FV}(N) \wedge z \notin \mathrm{FV}(N))\end{cases} \\
\left(M M^{\prime}\right)[N / x] & =(M[N / x])\left(M^{\prime}[N / x]\right)
\end{aligned}
$$

Note. There is another common way to write substitution: $M[x:=N]$ to mean $M[N / x]$. Some people use a prefix notation to write $[x:=N] M$ instead. Some people represent a (simultaneous) substitution itself as a function θ from variables to terms such that $\{x \mid \theta(x) \neq x\}$ is finite, and then define its application $M \theta$ to a term M.

The notion of α-equivalence formalizes the equality of terms up to remaining of bound variables.
Definition (α-equivalence). the relation \equiv_{α} is the smallest reflexive and transitive relation satisfying the following conditions.

- $\lambda x \cdot M \equiv{ }_{\alpha} \lambda y \cdot M[y / x]$ for all λ-terms M, variables x, and variables $y \notin \mathrm{FV}(M)$.
- $M \equiv{ }_{\alpha} M^{\prime}$ implies $\lambda x . M \equiv{ }_{\alpha} \lambda x . M^{\prime}$ for all λ-terms M and M^{\prime}.
- $M \equiv{ }_{\alpha} M^{\prime}$ implies $M N \equiv{ }_{\alpha} M^{\prime} N$ for all λ-terms M, M^{\prime} and N.
- $N \equiv{ }_{\alpha} N^{\prime}$ implies $M N \equiv{ }_{\alpha} M N^{\prime}$ for all λ-terms M, N and N^{\prime}.

Example(s). The pairs $\lambda x . x$ and $\lambda y . y, \lambda x . z x$ and $\lambda y . z y$, and $(\lambda x . x x)(\lambda x . x x)$ and $(\lambda y . y y)(\lambda z . z z)$ are all α-equivalent terms. In contrast, $\lambda x . z x$ and $\lambda x . w x$ are not α-equivalent.

Replacement of a λ-term with an α-equivalent one is called α-conversion or α-renaming.

Convention

We identify two α-equivalent λ-terms. In other words, $\lambda x . x$ and $\lambda y . y$ are treated as the same term. In this sense, the third clause of the definition $(\lambda y \cdot M)[N / x]$ is superfluous because we can choose the name of bound variables so that the conditions in the second clause are fulfilled.

β-Reduction

Now we are ready to define the all and only computing mechanism of λ-terms, β-reduction.
Definition (β-reduction). We define the relation \longrightarrow_{β} by the following rules.

$$
\overline{(\lambda x \cdot M) N \longrightarrow_{\beta} M[N / x]} \quad \frac{M \longrightarrow_{\beta} M^{\prime}}{M N \longrightarrow_{\beta} M^{\prime} N} \quad \frac{N \longrightarrow_{\beta} N^{\prime}}{M N \longrightarrow_{\beta} M N^{\prime}} \quad \frac{M \longrightarrow_{\beta} M^{\prime}}{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M^{\prime}}
$$

We sometimes omit β to write \longrightarrow. Intuitively, β-reduction replaces an occurrence of $(\lambda x . M) N$ with $M[N / x]$. A term M is in a $(\beta-)$ normal form if there is no N such that $M \longrightarrow_{\beta} N$. We say M is a normal form of N if M is in a normal form and $N \longrightarrow_{\beta}^{*} M$. Some λ-terms do not have normal forms, such as $(\lambda x . x x)(\lambda x . x x)$. A subterm of the form of $(\lambda x . M) N$ is sometimes called $(\beta-)$ redex. A term can contain multiple redexes as $(\lambda x .(\lambda y . y) x)((\lambda z . z)(\lambda w . w))$; in such a situation, the result of a β-reduction depends on the choice of the redex. It is known that those terms will coincide after further β-reductions if we choose redexes appropriately. This property is called Church-Rosser property.

Theorem (Church-Rosser). Let \equiv_{β} be the smallest reflexive, symmetric and transitive relation that contains \longrightarrow_{β}. Then, for all λ-terms M and M^{\prime} such that $M \equiv_{\beta} M^{\prime}$, there exists a term N such that $M \longrightarrow_{\beta}^{*} N$ and $M^{\prime} \longrightarrow_{\beta}^{*} N$.

It follows that, if a term has a normal form, the normal form is unique. Even if a term has a normal form, not all sequence of reduction lead to it (some may never terminate), as $(\lambda x . y)((\lambda x . x x)(\lambda x . x x))$. It is known that, if we reduce the leftmost outermost redex, the reduction sequence always ends in the normal form if it exists.

We may consider another reduction called η.

$$
\frac{x \notin \mathrm{FV}(M)}{\lambda x . M x \longrightarrow_{\eta} M} \quad \frac{M \longrightarrow_{\eta} M^{\prime}}{M N \longrightarrow_{\eta} M^{\prime} N} \quad \frac{N \longrightarrow_{\eta} N^{\prime}}{M N \longrightarrow_{\eta} M N^{\prime}} \quad \frac{M \longrightarrow_{\eta} M^{\prime}}{\lambda x . M \longrightarrow_{\eta} \lambda x \cdot M^{\prime}}
$$

Church Encoding

We now introduce how to represent computations in λ-calculus.
Church Booleans. First, we represent computation with Boolean values in λ-calculus. We represent a thing by what it can do. For Booleans, what they can do is branching, so we define true and false as follows.

$$
\begin{array}{ll}
\text { true } & \stackrel{\text { def }}{=} \\
\text { false } & \stackrel{\text { def }}{=} \\
\lambda x . \lambda y . x \\
\hline
\end{array}
$$

Branching then is merely an application.

$$
\text { if } M_{1} \text { then } M_{2} \text { else } M_{3} \stackrel{\text { def }}{=} M_{1} M_{2} M_{3}
$$

It is easy to see that true $M N \longrightarrow^{*} M$ and false $M N \longrightarrow^{*} N$.
Boolean functions can be defined on the representation. For example, the negation operator not can be defined as:

$$
n o t \stackrel{\text { def }}{=} \lambda b . \lambda x . \lambda y . b y x .
$$

Check how terms (not true) $M N$ and (not false) $M N$ will be reduced. As another example, we define the function and that does conjunction:

$$
\text { and } \stackrel{\text { def }}{=} \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} b_{2} \text { false. }
$$

The subterm $b_{1} b_{2}$ false essentially represents if b_{1} then b_{2} else false. Check how terms (and true b) MN and (and false b) $M N$ will be reduced.

Exercise. Define a λ-term "or" that corresponds to disjunction.

Church Pairs. We now define the representation of pairs. Since a pair encapsulates two pieces of data, what a pair can do is to pass the data to the rest of computation. Thus, if we write pair for the pair constructor, we can define it as follows.

$$
\text { pair } \stackrel{\text { def }}{=} \lambda x \cdot \lambda y \cdot \lambda f . f x y
$$

We extract the first and the second components of a pair by the following functions $f s t$ and snd, respectively.

$$
\begin{array}{ll}
f_{s t} & \stackrel{\text { def }}{=} \\
\text { snd } & \stackrel{\text { def.p true }}{=} \\
\lambda p . p \text { false }
\end{array}
$$

Check how $f s t$ (pair $M N$) will be reduced.

Church Numerals. Now, we discuss how to perform computations on natural numbers. In Church encoding, a natural number n is represented by the nth iteration.

In other words, the encoding of a natural number n represents the same computation as the following JavsScript-like code.

```
var r = z;
for (var i = 0; i < n; i++) {
    r = s(r);
}
```

In advance to defining the addition of Church numerals, we define the function succ to compute the successor.

$$
s u c c \stackrel{\text { def }}{=} \lambda n \cdot \lambda s . \lambda z . s(n s z)
$$

Addition $a d d$ is then as follows.

$$
a d d \stackrel{\text { def }}{=} \lambda n . \lambda m . n \text { succ } m
$$

For example, add 11 is reduced as follows.

$$
\begin{aligned}
& \text { add } 11=(\lambda n . \lambda m . n \text { succ } m)(\lambda s . \lambda z . s z)(\lambda s . \lambda z . s z) \\
& \longrightarrow(\lambda m .(\lambda s . \lambda z . s z) \text { succ } m)(\lambda s . \lambda z . s z) \\
& \longrightarrow(\lambda s . \lambda z . s z) \text { succ }(\lambda s . \lambda z . s z) \\
& \longrightarrow(\lambda z . s u c c z)(\lambda s . \lambda z . s z) \\
& \longrightarrow \text { succ }(\lambda s . \lambda z . s z)=(\lambda n . \lambda s . \lambda z . s(n s z))(\lambda s . \lambda z . s z) \\
& \longrightarrow \lambda s^{\prime} . \lambda z^{\prime} \cdot s^{\prime}\left((\lambda s . \lambda z . s z) s^{\prime} z^{\prime}\right) \\
& \longrightarrow \lambda s^{\prime} \cdot \lambda z^{\prime} \cdot s^{\prime}\left(\left(\lambda z . s^{\prime} z\right) z^{\prime}\right) \longrightarrow \lambda s^{\prime} \cdot \lambda z^{\prime} \cdot s^{\prime}\left(s^{\prime} z^{\prime}\right)=2
\end{aligned}
$$

Exercise. Another definition of succ is

$$
s u c c \stackrel{\text { def }}{=} \lambda n . \lambda s . \lambda z . n s(s z) .
$$

How add 11 will be reduced with this definition of succ? Also, one can define add without using succ as follows.

$$
a d d \stackrel{\text { def }}{=} \lambda n \cdot \lambda m \cdot \lambda s . \lambda z . n s(m s z)
$$

Compute add 11 with this definition.
Exercise. Give λ-terms mult and pow that compute multiplication and exponentiation.
We need a small trick to define a predecessor function.

$$
\text { pred } \stackrel{\text { def }}{=} \lambda n . f s t(n(\lambda p . p a i r(\text { snd } p)(\text { succ }(\text { snd } p))(\text { pair } 00))
$$

The trick is to keep the result of the previous iteration by using a pair. Notice that pred 0 evaluates to 0 in this definition.

By using pred, we can define subtraction.

$$
s u b \stackrel{\text { def }}{=} \lambda n \cdot \lambda m \cdot m \text { pred } n
$$

Notice that sub $n m$ evaluates to 0 if $n \leq m$.
It is sometimes useful to check whether a number is 0 or not.

$$
i s Z e r o \stackrel{\text { def }}{=} \lambda n(\lambda x . f a l s e) \text { true }
$$

Exercise. Give λ-terms $l e, l t, g e, g t$ and $e q$ that correspond to $(\leq),(<),(\geq),(>)$ and $(=)$ on natural numbers, respectively.

General Recursion

Assume that we have a λ-term Y that can be reduced as follows.

$$
Y M \longrightarrow^{*} M(Y M)
$$

With Y, we can realize recursive functions:

$$
s u m \stackrel{\text { def }}{=} Y(\lambda f . \lambda n . \mathbf{i f} \text { isZero } n \text { then } 0 \text { else } a d d n(f(\text { pred } n)))
$$

For example, sum 2 evaluates as follows.

$$
\begin{aligned}
& \text { sum } 2 \longrightarrow \text { if isZero } 2 \text { then } 0 \text { else } \text { add } 2(\operatorname{sum}(\text { pred } 2)) \\
& \longrightarrow{ }^{*} \text { add } 2 \text { (sum 1) } \\
& \longrightarrow * a d d 2(\text { if isZero } 1 \text { then } 0 \text { else } a d d 1(\operatorname{sum}(\text { pred } 1))) \\
& \longrightarrow \text { * add } 2(\text { add } 1(\text { sum } 0)) \\
& \longrightarrow{ }^{*} \text { add } 2(\text { add } 1(\text { if } i s Z e r o ~ 0 ~ t h e n ~ 0 ~ e l s e ~ a d d ~ 0 ~(s u m ~(p r e d ~ 0)))) ~ \\
& \longrightarrow{ }^{*} \text { add } 2(\text { add } 10) \longrightarrow{ }^{*} 3
\end{aligned}
$$

How do we define such Y ? A hint is the λ-term $\Delta=\lambda x . x x ;$ we have $\Delta(\lambda x . \Delta x) \longrightarrow$ $(\lambda x . \Delta x)(\lambda x . \Delta x) \longrightarrow \Delta(\lambda x . \Delta x)$. Then, consider a slightly different version $\Delta(\lambda x . f(\Delta x)))$ that produces f after copying by the first Δ. Then, we have $\Delta(\lambda x . f(\Delta x))) \longrightarrow(\lambda x . f(\Delta x))(\lambda x . f(\Delta x)) \longrightarrow$ $f(\Delta(\lambda x . f(\Delta x)))$. Thus, we can define Y as follows.

$$
Y \stackrel{\text { def }}{=} \lambda f . \Delta(\lambda x . f(\Delta x))
$$

This Y is known as Curry's fixed-point combinator.
Exercise. Give a λ-term that computes factorials with or without Y. Give a λ-term that computes the Ackermann function a defined below with Y.

$$
a(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ a(m-1,1) & \text { if } n=0 \\ a(m-1, a(m, n-1)) & \text { otherwise }\end{cases}
$$

