
Foundations of Software Science (ソフトウェア基礎科学) Week 5-6, 2015

Instructors: Kazutaka Matsuda and Eijiro Sumii

Typed λ-Calculus

Definition (λ-terms with Sums and Products). The set of terms is defined by the following BNF.

M,N ::= x | M N | λx.M
| (M,N) | π1M | π2M
| InL M | InR M | case M of (x.N1) (y.N2)

Intuitively, (M,N) makes the pair of M and N , π1M extracts the first component of the pair
M , and π2M extracts the second component. Expressions InL M and InR N are injections: InL M
assign the tag InL to M and InR M assign the tag InR to M . These tags are used in the case-
analysis performed by case M of (x.N1) (y.N2): if M is tagged left as InL M ′, then it is reduced
to N1[M

′/x], and if M is tagged right as InR M ′, the it is reduced to N2[M
′/x].

Formally, we have additional reduction rules

π1 (M,N) −→ M π2 (M,N) −→ N

case (InL M) of (x.N1) (y.N2) −→ N1[M/x] case (InR M) of (x.N1) (y.N2) −→ N2[M/y]

along with the rules to reduce subterms.

M −→ M ′

(M,N) −→ (M ′, N)
N −→ N ′

(M,N) −→ (M,N ′)
M −→ M ′

π1M −→ π1M
′

M −→ M ′

π2M −→ π2M
′

M −→ M ′

InL M −→ InL M ′
M −→ M ′

InR M −→ InR M ′
M −→ M ′

case M of (x.N1) (y.N2) −→ case M ′ of (x.N1) (y.N2)

N1 −→ N ′
1

case M of (x.N1) (y.N2) −→ case M of (x.N ′
1) (y.N2)

N2 −→ N ′
2

case M of (x.N1) (y.N2) −→ case M of (x.N1) (y.N
′
2)

There are terms, such as π1 (λx.x) and ((λx.x), (λy.y)) (λz.z), that are in normal form but
appear intuitively meaningless. We formalize “meaningful” normal form as values below (mutually
defined with the set of neutral terms).

V ::= λx.V | (V1, V2) | InL V | InR V | W
W ::= x | π1W | π2W | case W of (x.V1) (y.V2)

We call a term stuck if it is in normal form but not a value. Accordingly, we say that a term M
gets stuck if M −→∗ M ′ for some stuck term M ′.

Goal� �
Find a way to tell that a term will not get stuck before trying to reduce it.� �
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Why we have pairs and sums explicitly? One reason is to introduce clearly-meaningless
terms like π1 (λx.x) with no “meaningful” way to evaluate them. Recall that everything is a
function in the untyped λ-calculus. The other reason is that simple types discussed below are not
powerful enough to type Church-encoded data.

Simple Types

The idea is to classify terms by which kind of values they evaluates to. For example, if we know
that λx.x evaluates to a function, we know that π1 (λx.x) is meaningless because it tries to extract
the first component of a function (this is clearly impossible).

Definition. The set of (simple) types is defined as follows.

τ ::= B | τ1 × τ2 | τ1 + τ2 | τ1 → τ2

Here, B represents a base type such as Int or Bool , τ1× τ2 represents the product type of τ1 and
τ2, τ1+ τ2 represents the sum type of τ1 and τ2, and τ1 → τ2 represents the function type from τ1 to
τ2. Very roughly speaking, a term belongs to the type τ1 × τ2 will be reduced to a pair whose first
and second components belong to τ1 and τ2 respectively, and a term belongs to the type τ1 + τ2
will be reduced to a term that is either injected left from a term in τ1 or injected right from a term
in τ2.

Now we define how to give a term a type . A type environment is a mapping from variables
to types, which is used to assign types to free variables in a term. A typing judgment Γ ⊢ M : τ ,
which is read that under typing environment Γ term M has type τ , is defined by the following
typing rules.

Γ(x) = τ

Γ ⊢ x : τ
T-Var

Γ ⊢ M : τ ′ → τ Γ ⊢ N : τ ′

Γ ⊢ M N : τ
T-App

Γ ⊎ {x 7→ τ1} ⊢ M : τ2
Γ ⊢ λx.M : τ1 → τ2

T-Abs

Γ ⊢ M : τ1 Γ ⊢ N : τ2
Γ ⊢ (M,N) : τ1 × τ2

T-Pair
Γ ⊢ M : τ1 × τ2
Γ ⊢ π1M : τ1

T-Fst
Γ ⊢ M : τ1 × τ2
Γ ⊢ π2M : τ2

T-Snd

Γ ⊢ M : τ1
Γ ⊢ InL M : τ1 + τ2

T-Left
Γ ⊢ M : τ2

Γ ⊢ InR M : τ1 + τ2
T-Right

Γ ⊢ M : τ1 + τ2 Γ ⊎ {x 7→ τ1} ⊢ N1 : τ
′ Γ ⊎ {y 7→ τ2} ⊢ N2 : τ

′

Γ ⊢ case M of (x.N1) (y.N2) : τ
′ T-Case

Above, we name each inference rule for convenience. Here, ⊎ represents disjoint union. We assumed
that a term M of Γ ⊢ M : τ is appropriately α-renamed so that every Γ ⊎ {. . . } above is defined.
A term M is called well-typed (under Γ) if Γ ⊢ M : τ holds for some τ , and otherwise it is called
ill-typed. Notice that ∅ ⊢ M : τ implies that M is closed. For this set of the inference rules, which
rule should be applied to a term M is uniquely determined by the form of M . The set of rules
satisfying this condition is sometimes called syntax-directed. An example of a well-typed term is
λx.(x, x), which has the following derivation tree for any type τ .

{x 7→ τ} ⊢ x : τ {x 7→ τ} ⊢ x : τ

{x 7→ τ} ⊢ (x, x) : τ × τ

∅ ⊢ λx.(x.x) : τ → τ × τ
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An example of an ill-typed term is π1 (λx.x).
We state that well-typed closed normal forms are values.

Theorem ((An Equivalent form of) Progress). For a term M , if ∅ ⊢ M : τ for some τ and M is in
a normal form, M is a value.

Proof. Induction on the typing derivation of ∅ ⊢ M : τ .

Type Safety

Type safety is a statement something like “well-typed programs do not go wrong”. Here, since we
are interested in whether a term will get stuck or not, the type safety for our case is that “well-typed
programs do not get stuck”. This property is usually proved by proving the two properties:

• Subject reduction (or, preservation) is a statement that reductions preserve types. Thus,
well-typed terms are reduced to well-typed terms.

• Progress is a statement that a well-typed term is not stuck, i.e., either a value or reducible.
In other words, well-typed normal forms are values, which already we have proved.

Having the two properties, we can prove the type safety by a simple induction.
In advance to stating the subject reduction property, we introduce an important lemma below.

Lemma (Substitution Lemma). Let M and N be terms. If Γ ⊎ {x 7→ τ} ⊢ M : τ ′ and Γ ⊢ N : τ
for some Γ, τ and τ ′ then, Γ ⊢ M [N/x] : τ ′ holds.

Proof. Induction on the derivation of Γ ⊎ {x 7→ τ} ⊢ M : τ ′.

We are now ready to prove the subject reduction.

Theorem (Subject Reduction). Let M be a term such that Γ ⊢ M : τ for some Γ and τ . If
M −→ M ′, then Γ ⊢ M ′ : τ holds.

Proof. Induction on the derivation of M −→ M ′. We use the substitution lemma when substitution
occurs.

Theorem (Type Safety). For a term M such that ∅ ⊢ M : τ for some τ , if M −→∗ M ′ for some
M ′, M ′ is not stuck.

Proof. By the subject reduction property and by the induction on M −→∗ M ′, we can prove that
Γ ⊢ M ′ : τ holds. Then, by the progress property, M ′ is not stuck.

Other Important Properties

Theorem (Decidability of Type Checking). Given a type environment Γ, a term M and a type τ ,
checking whether Γ ⊢ M : τ holds or not is decidable.

Theorem (Strong Normalization). For a well-typed term M , there is no infinite sequence of M −→
M ′ −→ M ′′ −→ · · · .

In other words, every well-typed term has a normal form. This also means that the simply-typed
λ-calculus is not Turing complete.
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