
Foundations of Software Science (ソフトウェア基礎科学) Week 3, 2015

Instructors: Kazutaka Matsuda and Eijiro Sumii

Inductive Definition

Inductive definition: a style of definition of a set S that consists of (1) rules saying “for any
s1, . . . , sn, f(s1, . . . , sn) belongs to S assuming s1, . . . , sn belong to S”, and (2) “no other things
belong to S”. Sometimes, (2’) “S is the smallest set satisfying (1)” is used instead of (2).

Commonly, we omit (2) or (2’) by saying that “S is inductively defined as . . . ”.

Example(s). The set of even numbers Neven is defined as follows.

• 0 ∈ Neven.

• n+ 2 ∈ Neven for all n ∈ Neven.

• No other numbers belong to Neven.

Notice that, only by the first and second rule, the set Neven can contain 1; check that Neven = N
satisfies the first and second rule. □

Example(s). The set of even numbers Neven is defined inductively as follows.

• 0 ∈ Neven.

• n+ 2 ∈ Neven for all n ∈ Neven.

Example(s). The set of binary trees B is defined inductively as follows.

• leaf ∈ B

• node(t1, t2) ∈ B for all t1, t2 ∈ B.

For an inductively defined set, we have the corresponding induction principle. For example, we
have the following induction principles

Theorem (Induction Principle on Even Numbers). For any unary predicate P ,

(∀n ∈ Neven. P (n)) ⇔ P (0) ∧ (∀n ∈ Neven. P (n) ⇒ P (n+ 2))

holds.

Theorem (Induction Principle on Binary Trees). For any unary predicate P ,

(∀t ∈ B. P (t)) ⇔ P (leaf) ∧ (∀t1, t2 ∈ B. P (t1) ∧ P (t2) ⇒ P (node(t1, t2))

holds.

Exercise. Let leaves(t) be the number of leaves in t and nodes(t) be the number of nodes in t.
Prove by induction that leaves(t) = nodes(t) + 1 for any t ∈ B.

1

Inductive Definition of Functions and Relations

We can define functions and relations inductively. They are just special cases of sets.

Example(s). We define the subtree relation ⪯ on binary trees inductively as follows.

• leaf ⪯ leaf.

• t ⪯ node(t1, t2) if either t = node(t1, t2) or t ⪯ t1 or t ⪯ t2 for any t, t1, t2 ∈ B.

Example(s). We define the function leaves that computes the number of leaves, inductively as
follows.

• leaves(leaf) = 1.

• leaves(node(t1, t2)) = leaves(t1) + leaves(t2), for any t1, t2 ∈ B.

Exercise. Define the function nodes inductively. How about the function height that computes
the length of the longest path from the root to a leaf, where height(leaf) = 0.

Exercise. Prove by induction that t1 ⪯ t2 implies nodes(t1) ≤ nodes(t2) for all t1, t2 ∈ B.

bab

FYI: Mathematical Foundation on Inductive Definition

Definition. For a set S, a function f : 2S → 2S ismonotone ifX ⊆ Y implies f(X) ⊆ f(Y)
for all X,Y ∈ 2S .

Definition. For a function f , x ∈ dom(f) is called a fixed point if x = f(x).

Example(s). Let feven be a function defined by feven(X) = {0} ∪ {n+ 2 | n ∈ X}. Then,
the set of even numbers Neven and the set of natural numbers N are only fixed points of
feven. □

Theorem ((An Instance of) Tarski’s Fixpoint Theorem). For any monotone function f :
2S → 2S , the least fixed point of f exists and is given by

∩
{Y | f(Y) ⊆ Y }.

Example(s). For feven, feven(Y) ⊆ Y says that 0 ∈ Y and n+ 2 ∈ Y for any n ∈ Y . The
set

∩
{Y | feven(Y) ⊆ Y } is the smallest one that satisfies this condition, and thus nothing

but the inductive definition of Neven itself. □

Corollary. Let f : 2S → 2S be a monotone function, and X be its least fixed point. For
any set Y satisfying f(Y) ⊆ Y , X ⊆ Y holds.

Note. Let Y = {x ∈ Neven |P (x)} for a unary predicate P . Then, showing feven(Y) ⊆ Y
is nothing but showing P (0) ∧ (∀n ∈ Neven. P (n) ⇒ P (n + 2)). Thus, the corollary gives
nothing but the induction principle on Neven.

2

Inference Rules

Inference rule: a rule written of the form of

A1 A2 . . . An

B

that means “if A1, A2, . . . , An hold, then B does”. Sometimes the bar is omitted if there are no
premises A1, A2, . . . , An.

Example(s). The set of even numbers Neven is defined by the following inference rules.

0 ∈ Neven

n ∈ Neven

n+ 2 ∈ Neven

The second rule contains the (meta-)variable1 n that will be replaced by concrete numbers. Precisely
speaking, this kind of rules are inference rule schemas rather than rules.

Similarly, we can define the set of binary trees B using inference rules as follows.

leaf ∈ B
t1 ∈ B t2 ∈ B
node(t1, t2) ∈ B

We need not name the set of binary trees to define the set of binary trees.

leaf binary-tree

t1 binary-tree t2 binary-tree

node(t1, t2) binary-tree

Here, t binary-tree is a judgment that states “t is a binary tree”. □

Derivation tree: a tree of which every node is an instance of some inference rule. The existence of a
derivation tree means that the premises of all the inference rules occurring in the tree are fulfilled,
and thus we obtain the conclusion of its root.

Example(s). We conclude 4 ∈ Neven and node(node(leaf, leaf), leaf) ∈ B because we have the
following derivation trees.

0 ∈ Neven

2 ∈ Neven

4 ∈ Neven

leaf ∈ B leaf ∈ B
node(leaf, leaf) ∈ B leaf ∈ B
node(node(leaf, leaf), leaf) ∈ B

Instead, we cannot conclude 3 ∈ Neven or node ∈ B because we do not have any derivation tree
whose root concludes these statements. □

1Metavariables are just variables in mathematics. We usually use the term “variables” for variables in a
target programming language.

3

Backus Naur Form (BNF)

BNF : A way to specify the syntax of a language as a context-free grammar. The following is an
example.

⟨binary tree⟩ ::= leaf
| node(⟨binary tree⟩, ⟨binary tree⟩)

One familiar with context-free grammars would find that this definition is similar to the following
production rules.

⟨binary tree⟩ → leaf
⟨binary tree⟩ → node(⟨binary tree⟩, ⟨binary tree⟩)

However, nowadays in the context of the programming language, maybe since our interests
would not be mainly on string representations but on (abstract) syntax trees, the original-style
BNF is less commonly used. Instead, we just use BNFs to define tree-like things inductively. Also,
we do not use the special forms for nonterminals. Instead, we usually write either of the following
style.

t ::= leaf
| node(t1, t2)

or
t ::= leaf

| node(t, t)

All the three different styles of the definition of binary trees define the same thing.

Example(s) (Propositional Formulas). We define the set of propositional formulas by using the
following BNF.

A,B ::= P | ¬A | A ∧B | A ∨B | A ⇒ B

Here, P represents a propositional variable. □

Now, we are ready to define the syntax of the (untyped) λ-calculus!

M,N ::= x | λx.M | M N

Here, x represents a variable. M and N are called λ-terms or λ-expressions.

Example(s). λx.x, λx.y, λx.(λy.x), and (λx.(x x)) (λx.(x x)) are examples of λ-terms. □

Structural Induction

Inductions for tree-like data such as those can be defined by BNFs sometimes are called structural
induction.

4

