Foundations of
Software Science (w1)

Kazutaka Matsuda
Eijiro Sumii

Today's Topic

» General information about this lecture

» A quick tour (of my part)

> Polls

» Reviews of preliminary knowledges
(on blackboard)

About This Lecture ...

» Foundations of Software Sciences
e Part 1: Foundations of Functional

Programs and Logics
- taught by me (Kazutaka Matsuda)

e Part 2: Foundations of Concurrent

Programs
- taught by Prof. Sumii

Lecture Style

» | sometimes use slides

e [will upload the materials after the class
- Don’t copy the slides in the class

» | also use the blackboard too

e Still, don’t copy the blackboarc
- taking notes # copying the blackboard

» We will distribute handouts If necessary
* Such handouts may or may not be uploaded

4

Notes on Handouts

» They may not be uploaded
» They usually be distributed at the

beginning of a class

* |f you happen to be late,you may lose a
chance to get a handout

» Redistribution is not allowed

Textbooks

» You don’t have to buy any textbooks

for my part
e | will distribute handouts if necessary

» However, some textbooks help your
understanding a lot

Further Reading (1)

» M.H. Sarensen & P.Urzyczyn: Lectures on
the Curry-Howard Isomorphism, Elsevier

Further Reading (2)

» H.P. Barendregt: The Lambda Calculus.
Its Syntax and Semantics, Elsevier

Further Reading (3)

» J-Y. Girard, Y. Lafont, P. Taylor:
Proofs and Types

* http://www.paultaylor.eu/stable/Proofs+Types.html

http://www.paultaylor.eu/stable/Proofs+Types.html

Further Reading (4)

> BIBIET © SHER. AEAEEE S A
5 S, SRR

Evaluation

» Mainly by examinations

* We will have two examinations
- for my part
= for Sumii’s part

» Partly, by reports
* Today, you have report assignments
(see the handout)

11

Notes on
Reports and Exams

Your Goal

» To tell us “you understood asked points”

* We are NOT (only) asking correct answers

® |t's a sort of communication

| understood the points!
You < P E

Give me a credit!

NG: | cannot believe it (you may fail the course).
or
OK: | am convinced that you really did it!

>Me

13

One thing you must not to do

» Plagiarism

plagiarism | plerdzoriz(o)m |

noun [massnoun |

the practice of taking someone else's work or ideas and passing them off
as one's own. there were accusations of plagianism. | count noun | : # claims
there are similar plagiarisms in the software produced at the umwersity.

from Oxford Dictionary of English via #3 2.2.1 (Mac App).

e Clarify the origins if you borrow
somethings from someone else.

* See [https://www.indiana.edu/~tedfrick/
plagiarism/] for details 14

https://www.indiana.edu/~tedfrick/plagiarism/

A Quick Tour
(of My Part)

Background

» Software Is everywhere
* PCs
® servers, clouds
® game consoles
* mobile phones
* medical machines
® cars
* plants

Background

» Software bugs are everywhere
* PCs
® servers, clouds
® game consoles
* mobile phones
* medical machines
® cars
* plants

“History’s Worst Software Bugs” from WIRED
http://archive.wired.com/software/coolapps/news/2005/11/69355

IEEE GEAR SCIENCE ENTERTAINMENT BUSINESS SECURITY DESIGN OPINION VIDEO

ADVERTISEMENT

SOFTWARE : cooL ApPs)

History's Worst Software Bugs

Simson Garfinkel [11.08.05

Last month automaker Toyota announced a recall of 160,000 of its Prius hybrid vehicles following
reports of vehicle warning lights illuminating for no reason, and cars' gasoline engines stalling
unexpectedly. But unlike the large-scale auto recalls of years past, the root of the Prius issue wasn't a
hardware problem -- it was a programming error in the smart car's embedded code. The Prius had a
software bug.

With that recall, the Prius joined the ranks of the buggy computer -- a club that began in 1945 when
engineers found a moth in Panel F, Relay #70 of the Harvard Mark II system.The computer was
running a test of its multiplier and adder when the engineers noticed something was wrong. The
moth was trapped, removed and taped into the computer's logbook with the words: "first actual case
of a bug being found."

Sixty years later, computer bugs are still with us, and show no sign of going extinct. As the line

between software and hardware blurs, coding errors are increasingly playing tricks on our daily lives.

Bugs don't just inhabit our operating systems and applications -- today they lurk within our cell
phones and our pacemakers, our power plants and medical equipment. And now, in our cars.

But which are the worst?

T8's all $Aan soaoer 34 Aansree 32 sarcdlh & Bat af e ¢hat havra varmacakbad hasrnse T8'a hamndar 34 ssadae 3 acee

SUBSCRIBE GIVEAGIFT | RENEW | INTERNATIONAL ORDERS

subscribe to

MIGIED]

PRINT AND DIGITAL ACCESS
Subscribe to WIRED
Renew
Give a gift

Customer Service

Si'te
webexcoi NORDSTROM
Fast. Secure

Reliable.

gro(fdsltlctiviw. FALL
Try WebEx DENIM
= TRENDS

From Paigce Denim.

http://archive.wired.com/software/coolapps/news/2005/11/69355

Examples of Terrible Bugs
» Therac-25 (1985-1987)

® 6 patients were severely injured
» Ariane 5 (1996)
* A space rocket exploded

» Tokyo Stack Exchange (2006)
* Mizuho lost 41.6 billion yen
* TSE was ordered to pay 10.7 billion yen

19

Goal

» How to avoid bugs in softwares?
* by skilled programmers?
* by sophisticated software development
processes?
* by a lot of testing cycles?

* by mathematically-founded ways for
bug-free softwares

20

Topics

» How to model software and programs
» How to state bug-freeness
» How to prove bug-freeness

21

Main Topics of My Part

» A\ calculus

* a model of computation
* a model of functional programs

» Curry-Howard correspondence

® correspondence between
- programs
= proofs

22

(Untyped) A-calculus

» One of the simplest functional
programming languages
* only functions and applications
M 1:= x
Mi Moz

Ax .M j “fn x => M”in SML

» A model of computation
* can represent all computable functions .,

Simply-Typed A-Calculus

» One of the simplest typed functional
programming language
> Type safety

* No (a certain sort of) bugs
* Proved by subject reduction + progress

» Strong normalization
* Every typed program terminates

24

Curry-Howard Correspondence

» A program has a type P

= P holds in a certain logic
* Writing proofs is programming!
- Simply-typed A calculus
for (intuitionistic) propositional logic

= Coqg (based on Co()
- Agda (based on Martin-Lof Type Theory)

* Well-typed proofs are valid

® Strong normalization is a key to consistency
25

