
Foundations of  
Software Science (w1)

Kazutaka Matsuda
Eijiro Sumii

Today’s Topic
‣ General information about this lecture
‣ A quick tour (of my part)
‣ Polls
‣ Reviews of preliminary knowledges 

(on blackboard)

2

About This Lecture ...
‣ Foundations of Software Sciences

• Part 1: Foundations of Functional
Programs and Logics
- taught by me (Kazutaka Matsuda)

• Part 2: Foundations of Concurrent
Programs
- taught by Prof. Sumii

3

Lecture Style
‣ I sometimes use slides

• I will upload the materials after the class
- Don’t copy the slides in the class

‣ I also use the blackboard too
• Still, don’t copy the blackboard

- taking notes ≠ copying the blackboard
‣ We will distribute handouts if necessary

• Such handouts may or may not be uploaded

4

Notes on Handouts
‣ They may not be uploaded
‣ They usually be distributed at the

beginning of a class
• If you happen to be late, you may lose a

chance to get a handout
‣ Redistribution is not allowed

5

Textbooks
‣ You don’t have to buy any textbooks  

for my part
• I will distribute handouts if necessary

‣ However, some textbooks help your
understanding a lot

6

Further Reading (1)
‣ M.H. Sørensen & P. Urzyczyn: Lectures on

the Curry-Howard Isomorphism, Elsevier

7

Further Reading (2)
‣ H.P. Barendregt: The Lambda Calculus.

Its Syntax and Semantics, Elsevier

8

Further Reading (3)
‣ J.-Y. Girard, Y. Lafont, P. Taylor:  

Proofs and Types
• http://www.paultaylor.eu/stable/Proofs+Types.html

9

PROOFS AND TYPES

JEAN-YVES GIRARD

Translated and with appendices by

PAUL TAYLOR

YVES LAFONT

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York New Rochelle

Melbourne Sydney

http://www.paultaylor.eu/stable/Proofs+Types.html

Further Reading (4)
‣高橋正子：計算論．計算可能性とラム
ダ計算，近代科学社

10

Evaluation
‣ Mainly by examinations

• We will have two examinations
- for my part
- for Sumii’s part

‣ Partly, by reports
• Today, you have report assignments 

(see the handout)

11

Notes on  
Reports and Exams

Your Goal
‣ To tell us “you understood asked points”

• We are NOT (only) asking correct answers
• It’s a sort of communication

13

You
I understood the points!
Give me a credit!

Me

NG: I cannot believe it (you may fail the course).
 or
OK: I am convinced that you really did it!

One thing you must not to do
‣ Plagiarism

• Clarify the origins if you borrow
somethings from someone else.

• See [https://www.indiana.edu/~tedfrick/
plagiarism/] for details 14

from Oxford Dictionary of English via 辞書 2.2.1 (Mac App).

https://www.indiana.edu/~tedfrick/plagiarism/

A Quick Tour  
(of My Part)

Background
‣ Software is everywhere

• PCs
• servers, clouds
• game consoles
• mobile phones
• medical machines
• cars
• plants

16

Background
‣ Software bugs are everywhere

• PCs
• servers, clouds
• game consoles
• mobile phones
• medical machines
• cars
• plants

17

18

“History’s Worst Software Bugs” from WIRED
http://archive.wired.com/software/coolapps/news/2005/11/69355

http://archive.wired.com/software/coolapps/news/2005/11/69355

Examples of Terrible Bugs
‣ Therac-25 (1985-1987)

• 6 patients were severely injured
‣ Ariane 5 (1996)

• A space rocket exploded

‣ Tokyo Stack Exchange (2006)
• Mizuho lost 41.6 billion yen
• TSE was ordered to pay 10.7 billion yen

19

Goal
‣ How to avoid bugs in softwares?

• by skilled programmers?
• by sophisticated software development

processes?
• by a lot of testing cycles?

• by mathematically-founded ways for  
bug-free softwares

20

Topics
‣ How to model software and programs
‣ How to state bug-freeness
‣ How to prove bug-freeness

21

Main Topics of My Part
‣ λ calculus

• a model of computation
• a model of functional programs

‣ Curry-Howard correspondence
• correspondence between

- programs
- proofs

22

(Untyped) λ-calculus
‣ One of the simplest functional

programming languages
• only functions and applications

‣ A model of computation
• can represent all computable functions 23

M ::= x
 | M1 M2
 | λx.M “fn x => M” in SML

Simply-Typed λ-Calculus
‣ One of the simplest typed functional

programming language
‣ Type safety

• No (a certain sort of) bugs
• Proved by subject reduction + progress

‣ Strong normalization
• Every typed program terminates

24

Curry-Howard Correspondence
‣ A program has a type P  

≡ P holds in a certain logic
• Writing proofs is programming!

- Simply-typed λ calculus  
for (intuitionistic) propositional logic

- Coq (based on CoC)
- Agda (based on Martin-Löf Type Theory)

• Well-typed proofs are valid
• Strong normalization is a key to consistency

25

Polls

