High-Level Languages
for Bidirectional Transformations

Experiences and Future Directions

Kazutaka Matsuda
Tohoku University, Japan

This Talk is About ...

» A brief introduction of our recent projects on
bidirectional transformation languages
o visit https://bx-lang.github.io/EXHIBIT/

HOME INTRODUCTION SYSTEMS PAPERS PEOPLE

EXHIBIT

Expressive High-Level Languages for Bidirectional Transformations

- |Kazutaka Matsuda
- % Tohoku University, Japan

I e e ot o 4o oo o ~fes -t in different formats Bidirectional transformation
o ©) %" = }.lt s changed, the appropriate transformation is run to
Home Introduction Systems Papers People Meng Wang

lpm nt of bidirectional transformations through a new

th t the new languages will be closely integrated
ing existing language constructs, libraries, and
ew f rrrrrrr k.

Expressive High-Level Languages for

University of Bristol, UK

Ridirectional Transformations

https://bx-lang.github.io/EXHIBIT/
https://bx-lang.github.io/EXHIBIT/

Structure of This Talk

» Background
» A key result

*» HOBIT [M&W ESOP 2018]
» Recent progress

e SPARCL [M&W ICFP 2020]
» (A few of) future directions

v
v

Background

Motivation

» Data that share some information
* maybe in different formats

* maybe with non-trivial correspondences

» To keep the shared information in sync

A

— <?xml version="1.0"7>
1~ <data>...</data>

A

TT

Example of Scenarios

» A classical view updating [Bancilhon&Spyratos 81]

EMP DEP EMP MGR
DEP MGR

Sato Sales Sato Ito
Sales Ito ,

Suzuki Dev Suzuki Watanabe

Dev Watanabe
Takahashi Dev Takahashi Watanabe

Example of Scenarios

» Program texts and ASTs

-- comment
let y = 3
iny + 4

[IM&W 13, 18, Danielson 13, Zhu+ 15, 16, ...]

Example of Scenarios

» Folders and lists with tags

~
- N
/ \ .+ [costume,food]
Jan M ay
/ \ [costume]
palindrome.jpg gamer.jpg froghead.jpg
[costume]
-) | j

http://bx-community.wikidot.com/examples:catpictures

Bidirectional Transformation (BX)

(in a broader sense)
» A mechanism to achieve synchronization of data

* a couple of transformations
* change propagators
» ... with some laws to hold
* e.g.. NO propagation is triggered for the "sync state"

Ground Goals (in PL research)

» Foundations of BX programming
* puilding blocks for BX
* [anguages for BX
- syntax & semantics?
- type systems?
* programming techniques in BX languages
» BX scenarios in PL

10

Ground Goals (in PL research)

» Foundations of BX programming

e building blocks for BX

* languages for BX Our Main Focus
- syntax & semantics?

_ - type systems? -

- programmlng techniques in BX Ianguages

» BX scenarios in PL

10

Our Goal

» Design easy-to-use programming languages
* Slogan: make BX programming more accessible to
mainstream programmers

appendB :: B [a] » B [a] » B [a]

appendB x y = case x of
[] -> y with const True by A . A _.[]
(a:z) -> a : appendB z y with not . null

by (A _.A_.undefined)

11

Our Goal

» Design easy-to-use programming languages
* Slogan: make BX programming more accessible to
mainstream programmers

higher-order & functional (e.g., Haskell, OCami, ...)

appendB :: B [a] » B [a] » B [a]

appendB X y = case x of
[] > y with const True by A .A .[]
(a:z) -> a : appendB z y with not . null

by (A _.A_.undefined)

11

A Key Result

HOBIT [M&W ESOP 2018]

Background: (Asymmetric) Lenses

»Apairofget:S—-Vandput:SxV->S
#
‘L update!

D=L

[Bancilhon&Spyratos81, Foster+05, 07/, ...] 13

Well-Behavedness

» Required for “reasonable” BX

Acceptability (GetPut)

No update on the view,
no update on the source

SR
S22 A

Consistency (PutGet)

“Put” correctly reflects a view update

O==24
¢ update!

®\

[Bancilhon&Spyratos81, Foster+05, 07, ...

14

Background: Lens Programming

» Compose lenses by lens combinators

fstL :: Lens (A x B) A
(o) :: Lens B C -> Lens AB -> Lens A C

fstfstL :: Lens ((A x B) x C) A
fstfstL = fstL e fstL

15

Background: Lens Programming

» Compose lenses by lens combinators
well-behaved

,
fstL :: Lens (A x B) A
(o) :: Lens B C -> Lens AB -> Lens A C

fstfstL :: Lens ((A x B) x C) A
fstfstL = fstL e fstL

15

Background: Lens Programming

» Compose lenses by lens combinators
well-behaved

,
fstL :: Lens (A x B) A
(o) :: Lens B C -> Lens AB -> Lens A C

well-behavedness preserving

fstfstL :: Lens ((A x B) x C) A
fstfstL = fstL e fstL

15

Background: Lens Programming

» Compose lenses by lens combinators
well-behaved

p |
fstL :: Lens (A x B) A
(o) :: Lens B C -> Lens AB -> Lens A C

well-behavedness preserving

fstfstL :: Lens ((A x B) x C) A
fstfstL = fstL e fstL

well-behaved by construction

15

Problem: Lens Programming is Hard

» Programs get complicated quickly

appendL :: Lens ([a],[a]) [a]
appendL = cond idL (A_.True) (A_.A_.[])
(consL e (idL x appendlL))
(not o null) (A _.A_.undefined)
e rearr e (outlListL x idL)

where
rearr :: Lens (Either () (a,b), c) (Either c (a,(b,c)))
idL :: Lens a a
consL :: Lens (a,[a]) [a]

outListL :: Lens [a] (Either () (a,[a]))

16

Existing Approaches

» Bidirectionalization
[M+ 07/, Voigtlander 09, Voigtlander+ 10, 13, M&W 13, 15]
» derives lenses from a program of "get"
» Inductive programming [Maina+ 18, Miltner+ 18, 19]
* synthesizes lenses from I/O examples
» Applicative lenses [M&W 15]
* represents Lens S VasVs. Lens s S -> Lens s V

* not expressive enough

17

Challenge

» Programming lenses without using lens combinators
» keeping the good properties of lenses
- compositional reasoning and expressiveness
» pbased on applications and variables
(i.e., applicative programming)
- higher-order, in particular
- but, lenses are not functions

18

HOBIT [M&W 2018}

» A higher-order bidirectional programming language
* [enses as functions

* |lens combinators as higher-order functions

» supporting applicative programming style

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

19

HOBIT [M&W 2018}

» A higher-order bidirectional programming language
* [enses as functions

* |lens combinators as higher-order functions

» supporting applicative programming stvle

append :: [a] -> [a] -> [a]
appendB :: B [a] » B [a] » B [a] apﬁnd XY S EREG X O
_> y
appendB x y = €d5€ X of (a:z) -> a : append z y

[] >y I
(a:z) -> a : appendB z y

19

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

Bo - BT = Lens 0 T (atthe top level)

20

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of
[] ->y

(a:z) -> a : appendB z y
Bo - BT = Lens 0 T (atthe top level)

appB :: B ([a] x [a]) » B [a]
appB x = let (a,b) = x in appendB a b

20

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

Bo - BT = Lens 0 T (atthe top level)

appB :: B ([a] x [a]) » B [a]
appB x = let (a,b) = x in appendB a b

HOBiT> :get appB ([1], [2,3])

20

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

Bo - BT = Lens 0 T (atthe top level)

appB :: B ([a] x [a]) » B [a]

appB x = let (a,b) = x in appendB a b
HOBiT> :get appB ([1], [2,3])

[1,2,3]

20

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

Bo - BT = Lens 0 T (atthe top level)

appB :: B ([a] x [a]) » B [a]

appB x = let (a,b) = x in appendB a b
HOBiT> :get appB ([1], [2,3])

[1,2,3]

HOBiT> :put appB ([1], [2,3]) [4,5,6]

20

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

Bo - BT = Lens 0 T (atthe top level)

appB :: B ([a] x [a]) » B [a]

appB x = let (a,b) = x in appendB a b
HOBiT> :get appB ([1], [2,3])

[1,2,3]

HOBiT> :put appB ([1], [2,3]) [4,5,6]
([4],[5,6])

20

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

appB :: B ([a] x [a]) » B [a]
appB x = let (a,b) = x in appendB a b

HOBiT> :put appB ([1], [2,3]) [4,5,6,7]

21

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

appB :: B ([a] x [a]) » B [a]
appB x = let (a,b) = x in appendB a b

HOBiT> :put appB ([1], [2,3]) [4,5,6,7]
([4],[5,6,7])

21

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

appB :: B ([a] x [a]) » B [a]
appB x = let (a,b) = x in appendB a b
HOBiT> :put appB ([1], [2,3]) [4,5,6,7]

([4],[5,6,7])
HOBiT> :put appB ([1], [2,3]) [4,5]

21

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

appB :: B ([a] x [a]) » B [a]

appB x = let (a,b) = x in appendB a b
HOBiT> :put appB ([1], [2,3]) [4,5,6,7]
([4],[5,6,7])

HOBiT> :put appB ([1], [2,3]) [4,5]
([4],[51)

21

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

appB :: B ([a] x [a]) » B [a]

appB x = let (a,b) = x in appendB a b
HOBiT> :put appB ([1], [2,3]) [4,5,6,7]
([4],[5,6,7])

HOBiT> :put appB ([1], [2,3]) [4,5]

([4]1,[5])
HOBiT> :put appB ([1], [2,3]) []

21

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

appB :: B ([a] x [a]) » B [a]

appB x = let (a,b) = x in appendB a b
HOBiT> :put appB ([1], [2,3]) [4,5,6,7]
([4],[5,6,7])

HOBiT> :put appB ([1], [2,3]) [4,5]
([4],[51)

HOBiT> :put appB ([1], [2,3]) []

([, [

21

Advantages of HOBIT

»Applicative style
» familiar programming style
» Correctness by construction
* always yielding well-behaved lenses
» EXpressiveness
e at least as the lens framework [Foster+ 05, 07]
- lenses as functions
- lens combinators as higher-order functions

22

Outlines (of HOBIT introduction)

» Syntax of HOBIT Core
» Semantics
» Properties

23

Syntax of HOBIT Core

e:=x| Ax.e | e; e
True | False | [] | e1:e»
case eof {p; — e1; p2 — e}

X
True | False | [] | ej:eo

case eof {p; — e

y P2 — €2

24

Syntax of HOBIT Core

e:=x| Ax.e | e; e
True | False | [] | e1:e»
case eof {p; — e1; p2 — e}

X
True | False | [] | ej:e
case e of {p1 — e

\ y P2 — €2

.

BX part

24

Syntax of HOBIT Core

e:=x| Ax.e| ejer — As here

True | False | [] | e1:e»
case eof {p; — ey; p2 — e}

X BX part
True | False | [] | ej:e
case eof {p; — e

\ P2 — €2 J

.

24

Syntax of HOBIT Core

e::@ﬁx el e e — As here
ue | False | [] | ej: e

case eof {p; — ey; p2 — e}

(x) BX part
ue | False | [] | ej:e

case eof {p; — e;

g P2 — €2 J

24

Types required/ensured by BX parts

S,T==Bool | [S] | S— T | Bo
o,T ::= Bool | [0]

Examples o T
True: Bool True: BBoool
e

Ay.case yof {x — x} :Bo — Bo

Non Examples P
case True of {x — x]7

V)
case True of {x — Truel %

25

Outlines

» Semantics
» Properties

26

Staged Evaluation nspired by ivoggi 981

4

before get/put

AfAy.fy) (Ax.x:[]) xo :B[Bool]

eval. to eliminate As

» BX parts are treated as constructors

Xo:ll —_ 1st-order: ready for lens (get/put) interp.

only BX parts
remain

{xg— TruelFxp:[] =

True]

{xo — True} - [False] < xp:[] -

{xo — False}

Outlines

» Properties

28

Correctness

/Theorem

Given a closed HOBIT expression of type B » Bt
we can obtain a well-behaved lensin Lens ¢ T

~

Given f, f xo || E and then define:
get s = v if (xo=SiFE=>v
put s v=s'if {xg=siFv<E-d{xy=s"}

Well-behavedness is proved by Kripke logical relations

Lifting Lenses

Property
(R .)
Given a well-behaved lens in Lens o T,

a corresponding function of type Bo » BT
_ can be added to HOBIT. y

incB :: B Int » B Int
incB = fromLens (Ax.x + 1) (A_.Ay.y - 1)

Similar to the applicative lens [M&W 15] 30

Lifting Lens Combinators

/Property ~
Given a well-behavedness preserving lens combinator

Vs. Lens (s x 01) T1 » Lens (s x 02) T2

a corresponding higher-order function of type
(BO’1 -> B'E1) » Bo, » BT

Gan be added to HOBIT. y

via adding a bidirectional construct
case from a variant of cond [Foster+ 05, 07]

31

Summary

» HOBIT: a higher-order bidirectional language
° jn familiar (i.e., applicative) programming style

appendB :: B [a] » B [a] » B [a]
appendB x y = case x of

[] >y
(a:z) -> a : appendB z y

e replacing lens combinators
- lenses as functions
- lens combinators as higher-order functions

32

v

SPARCL [M&W ICFP 2020]

(A Very Brief Introduction)

Motivation (in the context of BX programming)

» We want to convert B-typed values to non-B-typed ones
* Everything bidirectional has type B in HOBIT

appendB :: B [a] » B [a] » B [a]
* put, some functions requires non-B values

incByB :: Nat -> B Nat » B Nat

34

Example: Huffman Encoding

huff :: B [Symbol] -> B (HuffTable x [Bit])
huff s = ???

makeHuff :: [Symbol] -> HuffTable
encode :: HuffTable -> B [Symbol] -> B [Bit]

» Construction of the Huffman encoding table is easier to
implement with non-B types
» Bidirectional encoding is easier to implement with

non-B typed Huffman encoding tables
35

SPARCL [M&W 20]

» A programming language ...
o for writing invertible functions
» through composing partially-invertible functions

being invertible after fixing some arguments
(e.g., addition, multiplication, Huffman encoding)

* supported by linear types
- a key to correctness by construction

36

SPARCL, compared with HOBIT

» Focuses on bijective lenses
» Uses linear types

» discarding of variables should be prohibited
- cf. fx =42

* pased on AZ [Bernardy+ 18] with inference [M 20]
- NO syntactic overhead

» Has the pin operator

pin :: BS - (S ->BT) =B (S ® T)

37

hllﬂ: In SPARCL (follows HOBIT's syntax)

huff :: B [Symbol] — B (HuffTable @ [Bit])

huff s =
let (s,h) = pin s (As'.new egHuff (makeHuff s'))
in pin h (Ah'. encode h' s)

new :: (a ->a ->Bool) -» a -> B a
makeHuff :: [Symbol] -> HuffTable
encode :: HuffTable -> B [Symbol] — B [Bit]

pin :: Bs —o (s ->Bt) B (s ® t)

38

hllﬂ: In SPARCL (follows HOBIT's syntax)

huff :: B [Symbol] — B (HuffTable @ [Bit])

huff s = :: [Symbol]
let (s,h) = pin s (As'.new egHuff (makeHuff s'))
in pin h (Ah'. encode h' s)

new :: (a ->a ->Bool) -» a -> B a
makeHuff :: [Symbol] -> HuffTable
encode :: HuffTable -> B [Symbol] — B [Bit]

pin :: Bs —o (s ->Bt) B (s ® t)

38

hllﬂ: In SPARCL (follows HOBIT's syntax)

huff :: B [Symbol] — B (HuffTable @ [Bit])

huff s = :: B HuffTable :: [Symbol]
let (s,h) = pin s (As'.new egHuff (makeHuff s'))
in pin h (Ah'. encode h' s)

new :: (a ->a ->Bool) -» a -> B a
makeHuff :: [Symbol] -> HuffTable
encode :: HuffTable -> B [Symbol] — B [Bit]

pin :: Bs —o (s ->Bt) B (s ® t)

38

hllﬂ: In SPARCL (follows HOBIT's syntax)

huff :: B [Symbol] — B (HuffTable @ [Bit])

huff s = :: B HuffTable :: [Symbol]
let (s,h) = pin s (As'.new egHuff (makeHuff s'))
in pin h (Ah'. encode h' s)

: ¢ HuffTable
new :: (a ->a ->Bool) -» a -> B a
makeHuff :: [Symbol] -> HuffTable
encode :: HuffTable -> B [Symbol] — B [Bit]

pin :: Bs —o (s ->Bt) B (s ® t)

38

v
v

Future Directions

A few of Future Directions

Unified Framework

» BX languages share ideas
* many variant of lenses (asymmetric, bijective, ...)
» functional representations for different variants
Basym S -> Basym T Bbij S —© Bpij T
» Unify them so that we can reuse programs/ecosystems
» qualified typing [Jones 95, Vytiniotis+11] helps?

Asym k => k' S — k T Bij k => kS —o k T
Bij k => Asym k

40

Integration to Main-Stream Systems

» Approach 1: embedded implementation
language constructs as (higher-order) functions
» unembedding [Atkey 09, Atkey+09] would help
- cf. embedded FliPpr [M&W 18]
» Approach 2: compilation
» compiling into main-stream languages
* [Ssue: how to preserve types?
- difficulty: staged semantics

41

Synthesis/Inductive Programming

» HOBIT programming is easier, but still requires effort
= synthesize HOBIT programs from examples and "get"

* OQur current team members:
- Me
- Meng Wang (University of Bristol)
- Cristina David (University of Bristol)
- Masaomi Yamaguchi (Student in Tohoku University)

42

Other Future Directions

» Better inference of linear types
» Using refinement types

* hint for acceptable updates

o for "with" conditions

» Programming techniques

» Multiple views

* B S represents updatable artifacts of type S

43

Conclusion

» EXxperiences and future directions on
high-level bidirectional programming languages
* Slogan: make BX programming more accessible to
mainstream (functional) programmers

appendB :: B [a] » B [a] » B [a]

appendB x y = case x of
[] -> y with const True by A .A _.[]
(a:z) -> a : appendB z y with not . null

by (A _.A_.undefined)

44

