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This Talk is about ...
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FUnCAL:  
a functional graph-transformation language 

reformulation of UnCAL [Buneman 00] 
graph transformation language from DB comm. 

describes infinite-tree transformations 
no special operators for graph transformations  
→ no special treatment in program manipulation 

runs as terminating finite-graph transformations 
by lazy evaluation (with black holes)



Background: UnCAL
A functional graph-transformation language 
[Buneman+ 00] 

terminating (in polynomial time) 
graph equality by bisimulation 

graphs = (possibly infinite) regular trees  
regular: #{subtrees} < ∞ 

polynomial-time equivalence check  
refocused recently in bidirectional graph 
transformations [Hidaka+10~, Sasano+11, Yu+12, ...]
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Syntax of (Positive) UnCAL
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▹  

(we removed “label equality test” for simplicity.)



UnCAL Graphs (1/3)
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UnCAL Graphs (2/3)
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marker

marker



UnCAL Graphs (3/3)
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Graphs with no root

multi-rooted graphs



Structural Recursion: srec
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Structural Recursion: srec
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Problem
Special operators for graph transformation 

especially marker-related operations 
▹

prevent us from applying FP-based program 
manipulation techniques directory to UnCAL 

optimization, verification, implementation, ...
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Approach
Express UnCAL graph transformations as  
usual functional programs on infinite trees 

leveraging the fact  
"graphs = (possibly-infinite) regular trees" 

cf. special operators for graph transformation
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Contributions
FUnCAL: functional reformulation of UnCAL 

describes infinite-tree transformations 
no special operators for graph manipulation  
→ more FP-based program-manipulation friendly 
expressive as UnCAL 

runs as terminating finite-graph transformation 
by lazy evaluation with black holes [Ariola&Klop 96] 

a variant of [Nakata&Hasegawa 09] 
ensured by our type system
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Outline
Introduction 
FUnCAL 
FUnCAL Programs as Graph Transformations 
Conclusion
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FUnCAL
λ→,× + constructors + restricted recursions 

call-by-name (for now)
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Examples
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Relationship to UnCAL
Typed UnCAL programs [Buneman+ 96] can 
be converted to typed FUnCAL programs 

see our paper for details
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Goal
Run FUnCAL programs as graph transformation 

semantics 
a variant of lazy evaluation with black holes 

[Nakata&Hasegawa 09] + memoized fold 

finer-type system 
simple types are not enough (see the next page)
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(black hole)



Problematic Example
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Problematic Example

20Non-regular, can't be a finite graph!



Observation & Idea
Without " ", everything is regular  
" " is regular if " " is a regular tree 
constructed beforehand 

Ok:    
Bad:     
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Stratify trees  
to avoid traversing trees that we are constructing



Our Type System
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(ignoring products)

trees (graphs) at generation n 

⊢

⊢

⊢

⊢



Theorems
FUnCAL programs converted from UnCAL are 
well-typed also in the finer type system 

If  ⊢ ,  then  yields a regular tree 
its bisimilar graph is obtained  
by lazy evaluation with black holes 

a variant of [Nakata&Hasegawa 09] 
+ memoized fold
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Related Work
Graph transformation frameworks in FP 
based on the graph isomorphism  

[Erwig 92, 2001, Fegaras&Sheard 96,  
 Hamana 10, Oliveira&Cook 12, ...] 

Different "graphs"  
Ours are based on the graph bisimulation
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Related Work
srec-like computation  

[Nishimura&Ohori 99] 
Framework for parallel programming  

Basis for in OODB query [Nishimura+96]  
foreach: similar but a bit weaker than srec 

CoCaml [Jeannin+ 13] 
Various ways to compute fixed-points 

including memoized recursion for cyclic data 
No formal discussions on correctness
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Conclusion
FUnCAL: functional reformulation of UnCAL 

describes infinite-tree transformations 
no special operators for graph manipulation  
→ more FP-based program-manipulation friendly 
expressive as UnCAL 

runs as terminating finite-graph transformation 
by lazy evaluation with black holes [Ariola&Klop 96] 

a variant of [Nakata&Hasegawa 09] 
ensured by our type system
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Future Work
Fusion  

short-cut fusion [Gill+93]?  
Bidirectionalization [M&Wang 13, 15] 
Generalization of the idea 

for cyclic data structures in general 
like [Hamana 2016]? 

for ordered trees 
More finer & general type system
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