A Functional Reformulation of UnCAL Graph-Transformations Or, Graph Transformation as Graph Reduction

Kazutaka Matsuda

TOHOKU UNIVERSITY

KAZUYUKI ASADA UNIVERSITY OF TOKYO

JAN 17 @ PEPM 2017

This Talk is about ...

FUnCAL:

- a functional graph-transformation language
- reformulation of UnCAL [Buneman 00]
 - graph transformation language from DB comm.
- o describes infinite-tree transformations
 - no special operators for graph transformations
 → no special treatment in program manipulation
- runs as *terminating finite-graph* transformations
 - by lazy evaluation (with black holes)

Background: UnCAL

- A functional graph-transformation language
 [Buneman+ 00]
 - terminating (in polynomial time)
 - o graph equality by *bisimulation*
 - graphs = (possibly infinite) regular trees
 - regular: #{subtrees} < ∞
 - polynomial-time equivalence check
 - refocused recently in bidirectional graph transformations [Hidaka+10~, Sasano+11, Yu+12, ...]

Syntax of (Positive) UnCAL

g ::= {} | {a:g} | $g_1 \cup g_2$ | &x | &x >g | $g_1 \oplus g_2$ | cycle(g) | () | $g_1 \oplus g_2$ | x | srec($\lambda(z,x).g_1$)(g_2)

a ::= z | L

(we removed "label equality test" for simplicity.)

Structural Recursion: srec

srec(λ(z.t).e)({z₁:t₁}∪…∪{z_n:t_n}) =
 (e[z₁/z,t₁/t])@srec(…)(t₁)
 U … U

 $(e[z_n/z,t_n/t])@srec(...)(t_n)$

```
srec(λ(z,t).&y▷{A:{z:&y}})
(&x@cycle(&x▷{B:&x}))
```


Structural Recursion: srec

&\

A

R

А

srec(λ(z.t).e)({z₁:t₁}∪…∪{z_n:t_n}) =
 (e[z₁/z,t₁/t])@srec(…)(t₁)
 U … U

 $(e[z_n/z,t_n/t])@srec(...)(t_n)$

srec(λ(z,t).&y▷{A:{z:&y}})
(&x@cycle(&x▷{B:&x}))

~ {B:{B:…}}

- **srec**(...)({B:{B:...}})
- = (&y⊳{A:{B:&y})
- @**srec**(…)({B:{B:…}})
- = (&y⊳{A:{B:&y})
 - @(<mark>&y</mark>⊳{A:{B:&y})

@**srec**(…)({B:{B:…}})

Structural Recursion: srec

srec(λ(z.t).e)({z₁:t₁}∪…∪{z_n:t_n}) =
 (e[z₁/z,t₁/t])@srec(…)(t₁)
 U … U

 $(e[z_n/z,t_n/t])@srec(...)(t_n)$

srec(λ(z,t).&y▷{A:{z:&y}})
(&x@cycle(&x▷{B:&x}))

~ {B:{B:…}}

- **srec**(...)({B:{B:...}})
- = (&y⊳{A:{B:&y})
 - @srec(…)({B:{B:…}})
- = (&y⊳{A:{B:&y})
 - @(<mark>&y</mark>⊳{A:{B:&y})

 $(esrec(\dots)(\{B:\{B:\dots\}\}))$

В

R

Α

Problem

- * **Special** operators for **graph** transformation
 - especially *marker-related operations*
 - ◆ &x, &x>g, @, cycle, (), ⊕, srec
 - prevent us from applying FP-based program manipulation techniques directory to UnCAL
 - optimization, verification, implementation, ...

Approach

Express UnCAL graph transformations as

 usual functional programs on infinite trees
 leveraging the fact
 graphs = (possibly-infinite) regular trees"

o cf. *special* operators for *graph* transformation

Contributions

- FUnCAL: functional reformulation of UnCAL
 - o describes infinite-tree transformations
 - *no special operators* for graph manipulation
 → more *FP-based program-manipulation* friendly
 - expressive as UnCAL
 - o runs as *terminating finite-graph* transformation
 - by lazy evaluation with black holes [Ariola&Klop 96]
 a variant of [Nakata&Hasegawa 09]
 - ensured by our type system

Outline

- Introduction
- FUnCAL
- FUnCAL Programs as Graph Transformations
- Conclusion

λ^{→,×} + constructors + restricted recursions
 call-by-name (for now)

$$e ::= x | \lambda x.e | e_1 e_2 | \pi_i | (e_1, \dots, e_2) | \bullet | e_1 : e_2 | e_1 \cup e_2 | L | fix e | fold_n e$$

* $\lambda^{\rightarrow,\times}$ + constructors + restricted recursions

* $\lambda^{\rightarrow,\times}$ + constructors + restricted recursions

* $\lambda^{\rightarrow,\times}$ + constructors + restricted recursions

Examples

fix $(\lambda x.B:x) \sim B:fix(\lambda x.B:x)$

 \sim B:B:B:B:...

 \sim \xrightarrow{B} $\xrightarrow{B$ $\left(\sim \mathbf{B} \right)$ 15

Examples

 $\begin{aligned} \textbf{fold}_1 & (\lambda z.\lambda t.A:z:t) \sim \begin{array}{l} \textbf{fold}_1 & (\lambda z.\lambda t.A:z:t) \\ (\textbf{fix} & (\lambda x.B:x)) \end{array} & \sim \begin{array}{l} \textbf{fold}_1 & (\lambda z.\lambda t.A:z:t) \\ (B:B:B:B:B:B:\cdots) \end{aligned} \\ \end{aligned}$

 \sim A:B:A:B:A:B:A:B:···

Relationship to UnCAL

 Typed UnCAL programs [Buneman+96] can be converted to typed FUnCAL programs
 see our paper for details

$$cycle(\&x \triangleright \{A:\&x\}) \longrightarrow \lambda z.fix (\lambda x.A:x)$$
$$\{A:\&x\}@(\&x \triangleright \{B:\{\}\}) \longrightarrow \lambda z.(\lambda x.A:x) ((\lambda y.B:\bullet) z)$$

Outline

- Introduction
- FUnCAL
- FUnCAL Programs as Graph Transformations
 Conclusion

Goal

- Run FUnCAL programs as graph transformation
 - semantics
 - a variant of lazy evaluation with black holes
 - o [Nakata&Hasegawa 09] + memoized fold

• finer-type system

simple types are not enough (see the next page)

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

fix (λx .B:insA x)

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

fix $(\lambda x.B:insA x)$ \rightarrow^* B:insA (**fix** ...)

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

fix $(\lambda x.B:insA x)$ $\rightarrow^* B:insA (fix ...)$ $\rightarrow^* B:insA (B:insA (fix ...))$

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

fix $(\lambda x.B:insA x)$ $\rightarrow^* B:insA (fix ...)$ $\rightarrow^* B:insA (B:insA (fix ...))$ $\rightarrow^* B:A:B:insA^2 (fix ...)$

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

- fix $(\lambda x.B:insA x)$ \rightarrow^* B:insA (fix ...) \rightarrow^* B:insA (B:insA (fix ...)) \rightarrow^* B:A:B:insA² (fix ...)
- \rightarrow^* B:A:B:insA² (B:insA (**fix** ...))

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

- fix (λx .B:insA x) →* B:insA (fix ...) →* B:insA (B:insA (fix ...)) →* B:A:B:insA² (fix ...) →* B:A:B:insA² (B:insA (fix ...))
- \rightarrow^* B:A:B:A:A:A:B:insA³ (**fix** ...)

insA = **fold**₁ ($\lambda z.\lambda t.A:z:t$)

fix $(\lambda x.B:insA x)$ \rightarrow^* B:insA (**fix** ...) \rightarrow^* B:insA (B:insA (**fix** ...)) \rightarrow^* B:A:B:insA² (**fix** ...) \rightarrow^* B:A:B:insA² (B:insA (**fix** ...)) \rightarrow^* B:A:B:A:A:A:B:insA³ (**fix** ...) Non-regular, can't be a finite graph! \rightarrow^* BABA³BA⁷BA¹⁵BA³¹BA⁶³B...

Observation & Idea

- Without "fold", everything is regular
- * "fold f t" is regular if "t" is a regular tree
 constructed beforehand
 - **Ok**: insA (**fix** (λx .B:x))
 - **Bad:** fix $(\lambda x.B:insA x)$

Stratify trees

to avoid traversing trees that we are constructing

Our Type System (ignoring products)

τ := Label | G<n> | $\tau_1 \rightarrow \tau_2$

trees (graphs) at generation n

$$\Gamma \vdash \mathbf{fix} \in : \mathsf{G} < \mathsf{n} >$$

$$\label{eq:G} \begin{array}{ccc} \Gamma \ \vdash \ e \ : \ Label \ -> \ G < m > \ \rightarrow \ G < m > \\ \end{array} \begin{array}{ccc} n \ < \ m \end{array} \end{array} \\ \Gamma \ \vdash \ \textbf{fold}_1 \ e \ : \ G < n > \ \rightarrow \ G < m > \end{array}$$

Theorems

FUnCAL programs converted from UnCAL are well-typed also in the finer type system

* If \vdash e : G<n>, then e yields a regular tree

- its bisimilar graph is obtained by lazy evaluation with black holes
 - a variant of [Nakata&Hasegawa 09]
 + memoized fold

Related Work

- Graph transformation frameworks in FP based on the graph isomorphism
 - Erwig 92, 2001, Fegaras&Sheard 96, Hamana 10, Oliveira&Cook 12, ...]
 - Different "graphs"
 - Ours are based on the graph bisimulation

Related Work

- * **srec**-like computation
 - o [Nishimura&Ohori 99]
 - Framework for parallel programming

 Basis for in OODB query [Nishimura+96]
 - **foreach**: similar but a bit weaker than **srec**
 - o CoCaml []eannin+13]
 - Various ways to compute fixed-points
 o including memoized recursion for cyclic data
 - No formal discussions on correctness

Conclusion

- FUnCAL: functional reformulation of UnCAL
 - o describes infinite-tree transformations
 - *no special operators* for graph manipulation
 → more *FP-based program-manipulation* friendly
 - expressive as UnCAL
 - o runs as terminating finite-graph transformation
 - by lazy evaluation with black holes [Ariola&Klop 96]
 a variant of [Nakata&Hasegawa 09]
 - ensured by our type system

Future Work

- Fusion
 - o short-cut fusion [Gill+93]?
- Bidirectionalization [M&Wang 13, 15]
- * Generalization of the idea
 - for cyclic data structures in general
 - Iike [Hamana 2016]?
 - for ordered trees
- More finer & general type system