
A Functional Reformulation of
UnCAL Graph-Transformations

Or, Graph Transformation as Graph Reduction

JAN 17 @ PEPM 2017

KAZUTAKA MATSUDA
TOHOKU UNIVERSITY

KAZUYUKI ASADA
UNIVERSITY OF TOKYO

This Talk is about ...

2

FUnCAL:  
a functional graph-transformation language

reformulation of UnCAL [Buneman 00]
graph transformation language from DB comm.

describes infinite-tree transformations
no special operators for graph transformations  
→ no special treatment in program manipulation

runs as terminating finite-graph transformations
by lazy evaluation (with black holes)

Background: UnCAL
A functional graph-transformation language
[Buneman+ 00]

terminating (in polynomial time)
graph equality by bisimulation

graphs = (possibly infinite) regular trees
regular: #{subtrees} < ∞

polynomial-time equivalence check
refocused recently in bidirectional graph
transformations [Hidaka+10~, Sasano+11, Yu+12, ...]

3

～

…

Syntax of (Positive) UnCAL

4

▹  

(we removed “label equality test” for simplicity.)

UnCAL Graphs (1/3)

5

UnCAL Graphs (2/3)

6

▹

▹

▹

marker

marker

UnCAL Graphs (3/3)

7

▹
▹

Graphs with no root

multi-rooted graphs

Structural Recursion: srec

8

▹
▹

Structural Recursion: srec

8

▹
▹

▹

▹
▹

Structural Recursion: srec

8

▹
▹

～

▹

▹
▹

Problem
Special operators for graph transformation

especially marker-related operations
▹

prevent us from applying FP-based program
manipulation techniques directory to UnCAL

optimization, verification, implementation, ...

9

Approach
Express UnCAL graph transformations as  
usual functional programs on infinite trees

leveraging the fact  
"graphs = (possibly-infinite) regular trees"

cf. special operators for graph transformation

10

Contributions
FUnCAL: functional reformulation of UnCAL

describes infinite-tree transformations
no special operators for graph manipulation  
→ more FP-based program-manipulation friendly
expressive as UnCAL

runs as terminating finite-graph transformation
by lazy evaluation with black holes [Ariola&Klop 96]

a variant of [Nakata&Hasegawa 09]
ensured by our type system

11

Outline
Introduction
FUnCAL
FUnCAL Programs as Graph Transformations
Conclusion

12

FUnCAL
λ→,× + constructors + restricted recursions

call-by-name (for now)

13

 
 

FUnCAL
λ→,× + constructors + restricted recursions

call-by-name (for now)

13

 
 

FUnCAL
λ→,× + constructors + restricted recursions

call-by-name (for now)

13

 
 

FUnCAL
λ→,× + constructors + restricted recursions

call-by-name (for now)

13

 
 

Examples

14

～

～

～

Examples

15

～

～

～

～

Examples

16

～

～

～

～

Relationship to UnCAL
Typed UnCAL programs [Buneman+ 96] can
be converted to typed FUnCAL programs

see our paper for details

17

▹

▹

Outline
Introduction
FUnCAL
FUnCAL Programs as Graph Transformations
Conclusion

18

Goal
Run FUnCAL programs as graph transformation

semantics
a variant of lazy evaluation with black holes

[Nakata&Hasegawa 09] + memoized fold

finer-type system
simple types are not enough (see the next page)

19

(black hole)

Problematic Example

20

Problematic Example

20

Problematic Example

20

Problematic Example

20

Problematic Example

20

Problematic Example

20

Problematic Example

20

Problematic Example

20Non-regular, can't be a finite graph!

Observation & Idea
Without " ", everything is regular
" " is regular if " " is a regular tree
constructed beforehand

Ok:
Bad:

21

Stratify trees  
to avoid traversing trees that we are constructing

Our Type System

22

(ignoring products)

trees (graphs) at generation n

⊢

⊢

⊢

⊢

Theorems
FUnCAL programs converted from UnCAL are
well-typed also in the finer type system

If ⊢ , then yields a regular tree
its bisimilar graph is obtained  
by lazy evaluation with black holes

a variant of [Nakata&Hasegawa 09] 
+ memoized fold

23

Related Work
Graph transformation frameworks in FP
based on the graph isomorphism

[Erwig 92, 2001, Fegaras&Sheard 96,  
 Hamana 10, Oliveira&Cook 12, ...]

Different "graphs"
Ours are based on the graph bisimulation

24

Related Work
srec-like computation

[Nishimura&Ohori 99]
Framework for parallel programming

Basis for in OODB query [Nishimura+96]
foreach: similar but a bit weaker than srec

CoCaml [Jeannin+ 13]
Various ways to compute fixed-points

including memoized recursion for cyclic data
No formal discussions on correctness

25

Conclusion
FUnCAL: functional reformulation of UnCAL

describes infinite-tree transformations
no special operators for graph manipulation  
→ more FP-based program-manipulation friendly
expressive as UnCAL

runs as terminating finite-graph transformation
by lazy evaluation with black holes [Ariola&Klop 96]

a variant of [Nakata&Hasegawa 09]
ensured by our type system

26

Future Work
Fusion

short-cut fusion [Gill+93]?
Bidirectionalization [M&Wang 13, 15]
Generalization of the idea

for cyclic data structures in general
like [Hamana 2016]?

for ordered trees
More finer & general type system

27

28

