
A Higher-Order Language that Bridges  
Uni- and Bi-directional Programming

Motivation
Language to guarantee well-behavedness  
[Bancilhon&Spyratos 81, Foster+07, …]

Applicative bidir. programming with
higher-order func. (cf. lens [Foster+07])

Control over how updates will be
translated (cf. [M&W 15])

Background: Bidir. Trans. (BX)
get: Src → View

update!

put: Src → View → Src

HOBiT
Programming Language HOBiT

Examples (More in Demo)
reverse :: B [a] -> B [a]
reverse z = h z []B null
h z r p = caseB z of
 [] -> r with p
 a:x -> h x (a :B r) (p . tail) with not . p

P ::= x1 = e1 … xn = en
e ::= x | λx.e | e1 e2 | True | False | [] | e1 : e2
 | case e of { p1 -> e2; x2 -> e2 }
 | TrueB | FalseB | []B | e1 :B e2
 | caseB e of { p1 -> e1 with e1’;  
 x2 -> e2 with e2’}

A simple type system with the unary type
constructor B
τ of Bτ must not contain “→” and “B”
The result type of caseB must be of B-type 
 
 
 

“Bσ→Bτ”-typed programs represent well-
behaved BX between σ and τ (correctness)

Core Syntax

Denotational Semantics (Sketch)

⟦Bτ⟧H = BX H ⟦τ⟧
⟦σ → τ⟧H =  
 ΠS∈Tuple(BX S H → ⟦σ⟧S → ⟦τ⟧S)

Δ is for variables introduced by caseB

⟦Γ;Δ⊢e:τ⟧ ∈  
 ΠS∈Tuple(BX S ⟦Δ⟧ → ⟦Γ⟧S → ⟦τ⟧S)

Idea underlying Denotation of
caseB e0 of { a:x -> e1 with φ1; y -> e2 with φ2 }

-- from [M&W 15]
data Val = VFun (Val -> Val) | B Int
data Exp = Var String | App Exp Exp
 | Abs String Exp | Inc Exp

incL :: B Int -> B Int
incL = liftInj (λx.x+1) (λx.x-1) 

eval :: Exp -> [(String,Val)] -> Val
eval e env = case e of
 Var x -> fromJust (lookup x env)
 App e1 e2 -> let VFun f = eval e1 env
 in f (eval e2 env)
 Abs x e1 -> VFun (λv. eval e1 ((x,v):env))
 Inc e -> VNum (incL n)

Intuitively, S, H, ⟦Δ⟧ are sets of “stacks” to be updated

v
=
va
:v
x

v0
<id,⟦e0⟧>

otherwise v0

va

vx
⟦e1⟧

⟦e2⟧

v1

v2

assert ⟦φ
1⟧

as
se
rt
 ⟦
φ2

⟧

v

B [String] Updatable lists of strings
[B String] Lists of updatable strings
[String] Lists of strings

Kazutaka Matsuda (Tohoku University) and Meng Wang (University of Kent)

[M&W15]: Kazutaka Matsuda and Meng Wang: Applicative Bidirectional Programming with Lenses. ICFP 2015. pp. 62–74

Branch switching w/ missing values during put [Foster+07]

Issue: compositional

reasoning w/ them 
(esp. those in a stack)

