
Embedding Invertible Languages with Binders
A Case of the FliPpr Language

Kazutaka Matsuda
Tohoku University

Japan
kztk@ecei.tohoku.ac.jp

Meng Wang
University of Bristol
United Kingdom

meng.wang@bristol.ac.uk

Abstract
This paper describes a new embedding technique of invert-
ible programming languages, through the case of the FliPpr
language. Embedded languages have the advantage of inher-
iting host languages’ features and supports; and one of the
influential methods of embedding is the tagless-final style,
which enables a high level of programmability and extensi-
bility. However, it is not straightforward to apply the method
to the family of invertible/reversible/bidirectional languages,
due to the different ways functions in such domains are rep-
resented. We consider FliPpr, an invertible pretty-printing
system, as a representative of such languages, and show that
Atkey et al.’s unembedding technique can be used to address
the problem. Together with a reformulation of FliPpr, our
embedding achieves a high level of interoperability with the
host language Haskell, which is not found in any other in-
vertible languages. We implement the idea and demonstrate
the benefits of the approach with examples.

CCS Concepts • Software and its engineering→ Func-
tional languages; Domain specific languages; Polymor-
phism; Syntax; Parsers;

Keywords EDSL, Program Inversion, Pretty-Printing, Pars-
ing

ACM Reference Format:
Kazutaka Matsuda and Meng Wang. 2018. Embedding Invertible
Languages with Binders: A Case of the FliPpr Language. In Pro-
ceedings of the 11th ACM SIGPLAN International Haskell Symposium
(Haskell ’18), September 27-28, 2018, St. Louis, MO, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3242744.3242758

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Haskell ’18, September 27-28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00
https://doi.org/10.1145/3242744.3242758

1 Introduction
Embedded languages, languages expressed via libraries in
host languages, are popular. The great advantage of the ap-
proach is that an embedded language inherits the generic
features of its host language, as well as the ecosystem includ-
ing compilers, editors, IDEs etc. Haskell, featuring strong ab-
straction mechanisms (higher-order functions, type classes
and so on) and a powerful type system, serves as a good
platform for embedded languages [6, 8, 16, 18, 20, 25, 33, 36].
To embed a language, one needs to specify a way to ex-

press the guest language’s constructs in the host language.
Among the various ways to embed syntax, the tagless-final
style [4] is known for its programmability and extensibil-
ity. For example, for the simply-typed λ-calculus, one can
express its syntax by the following type class.

class Lam e where
abs :: (e a → e b) → e (a → b)

app :: e (a → b) → e a → e b

In the tagless-final style, guest-language binders are expressed
by host-language functions, enabling the construction of
embedded terms via the host language’s (higher-order) func-
tions. In this case, the functions abs and app provide a way to
interconvert functions of the two levels. The semantics of the
guest language are given by instances of the type class. For
example, using the identity functor is enough for the usual
evaluation (where the guest and host language functions
coincide).
One may take this promotion of the guest-language’s

binders to host-language functions for granted, and indeed
for most cases straightforward definitions of abs and app
exist. However for some semantic domains, where one lan-
guage’s functions are not naturally the other’s, such promo-
tion becomes much more difficult to implement. One typical
class of examples are the invertible/reversible/bidirectional
programming languages [10, 24, 29, 37], where a “function”
can be executed in both forward and backward directions
(in the remainder of this paper, we will use “invertible lan-
guages” to refer to this class of languages). In this case, a
function in such a domain is actually a (encapsulated) pair
of functions (one in each direction) in a conventional unidi-
rectional language, which is problematic as a bound value
serves as an input of one function and output of the other,

https://doi.org/10.1145/3242744.3242758
https://doi.org/10.1145/3242744.3242758

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

but the tagless-final style expects the binder to be realized
by a single function.
This mismatch of function representations creates a bar-

rier in effective embedding. To the best of the authors knowl-
edge, existing embedded implementations of invertible pro-
gramming languages, such as implementations (e.g., lens,
pointless-lenses [30] and putlenses [31]) of lens [10]
variants and invertible-syntax [34], do not have any binders.
As a result, the ability to construct invertible programs us-
ing host language functions is limited: programming with
names and binders is simply unavailable and strictly point-
free composition is the only means for program construction.
In addition to the problem of binder promotion, invertible
languages sometimes treat recursive definitions explicitly for
efficiency or safety [10, 12, 13, 23, 24, 29], and there are very
often specialized syntactic restrictions [23, 24, 29]. These
characteristics together make the embedding of inverting
languages particularly challenging.

In this paper, we provide a solution to the problem exem-
plified by embedding in Haskell an invertible programming
language FliPpr [24]. FliPpr is a language for writting pretty-
printers based on Wadler [36]’s pretty-printing combinators,
which can be inverted to produce parsers that are correct
with respect to the pretty-printers:

parse (prettyprint t) = t (Correctness Law)

We choose FliPpr as it is representative of an invertible lan-
guage and is independently useful. It focuses on a certain
application (development of pretty-printers and parsers in
synchronization), and adopts syntactic restrictions to enable
(outsourced) complex analysis. Specifically, the FliPpr system
generates context-free grammar with actions that is compat-
ible with existing parsing algorithms and tools. Moreover,
FliPpr features a conventional programming style, allowing
function definitions, calls and pattern matching; the preser-
vation of them in the embedding is a challenge that is of
general interest.
The key idea underpinning our approach is the use of a

technique known as unembedding [1, 2, 19], which trans-
forms syntax in a tagless-final style to de Bruijn terms. The
original motivation of unembedding is to convert a user-
friendly syntax to a program-manipulation-friendly form.
We show in this paper that the same technique is useful for
embedding invertible languages as it gives access to type
environments via de Bruijn terms. Of course, to embed an
invertible language requires more than unembedding. In ad-
dition, we reformulate FliPpr to accept arbitrary user-defined
Haskell datatypes, and deal with features such as syntactic
restrictions and explicit handling of recursions.
As far as we are aware, this work is the first dedicated

effort to embed an invertible language with enhanced inter-
operability, and we have successfully embedded FliPpr to
achieve a good result. Despite the success, we also recognize

that there are significant differences among different invert-
ible languages, and the techniques proposed in this paper
alone will not be sufficient for embedding arbitrary invert-
ible languages. Nevertheless, we believe that the progress
made in this paper is a significant step towards a general
solution.

In summary, our contributions are:
• We use the unembedding transformation [1, 2, 19] to
address the binder representation problem in embed-
ding invertible programming languages.
• We reformulate FliPpr to enhance its interoperability
with Haskell. Specifically, FliPpr functions now can
take arbitrary Haskell datatypes as input.
• We discuss how we treat rather complex features in
FliPpr, including the treeless restriction [35] and ex-
plicit treatment of recursions to produce CFGs with
actions.

The implementation of the system is available from https:
//bitbucket.org/kztk/flippre/.

The rest of this paper is organized as follows. Section 2
reviews the techniques our paper relies on, namely FliPpr
and the unembedding transformation. Section 3 describes
how we embed non-recursive FliPpr, including its reformula-
tion. Section 4 shows our treatment of recursions. Section 5
proposes improvements of our embedding both from pro-
grammability and efficiency aspects. Section 7 explores em-
bedding of general invertible languages and discusses related
work, and Section 8 concludes the paper.

2 Preliminaries
In this section, we briefly review the techiniques on which
our paper is based on, namely FliPpr [24] and the unembed-
ding transformation [1, 2, 19].

2.1 FliPpr: Invertible Pretty-Printing System
FliPpr is a system that derives a parser from a pretty-printer
definition so that the parser is correct with respect to the
printer. The FliPpr system has a designated programming lan-
guage, which is also called FliPpr, that is based on Wadler’s
pretty-printing combinators [36]. FliPpr guarantees that it
always generates a parser representable as a context-free
grammar (CFG) with actions.

More specifically, FliPpr consists of two languages: a core
and a surface one. The core language has strong syntactic
restrictions, namely being treeless and linear, and is directly
subjected to inversion [23]. The surface language is trans-
lated to the core via program transformations such as defor-
estation [35].

For example, let us consider a subset of arithmetic expres-
sions that consist of only “1” and “−”. A pretty-printer in
Fig. 1 is written in the surface language, which will be con-
verted to the pretty-printer in Fig. 2. After that, the FliPpr
system generates the CFG in Fig. 3.

https://bitbucket.org/kztk/flippre/
https://bitbucket.org/kztk/flippre/

Embedding Invertible Languages with Binders Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

pprMain x = nil <> ppr False x <> nil
ppr b x = manyParens (ppr ′ b x)

ppr ′ b One = text "1"

ppr ′ b (Sub x y) = parensIf b (дroup (

ppr False x <>

nest 2 (lineN <> text "-" <> spaceN <> ppr True y)))

manyParens d = d <? parens (manyParens d)
parens d = text "(" <> nil <> d <> nil <> text ")"
parensIf b d = if b then parens d else d

Figure 1. A Program in FliPpr’s Surface Language.

pprMain x = nil <> pprF x <> nil

pprF x = ppr ′F x <? text "(" <> nil <> pprF x <> nil <> text ")"
ppr ′F One = text "1"

ppr ′F (Sub x y) = дroup (

pprF x <> nest 2 (lineN <> text "-" <> spaceN <> pprT y))

pprT x = ppr ′T x <? text "(" <> nil <> pprT x <> nil <> text ")"
ppr ′T One = text "1"

ppr ′T (Sub x y) = text "(" <> nil <> дroup (

pprF x <>

nest 2 (lineN <> text "-" <> spaceN <> pprT y)) <> nil <> text ")"

Figure 2. A Corresponding Program in the Core Language.

PprMain→ Nil PprF Nil {$2}
PprF → Ppr ′F {$1}

→ "(" Nil PprF Nil ")" {$3}
Ppr ′F → "1" {One}

→ PprF LineN "-" SpaceN PprT {Sub $1 $5}
. . .

Figure 3. The CFG with actions obtained from Fig. 2

prog ::= r1 . . . rn
r ::= f p1 . . . pn = e
e ::= text s | e1 <> e2 | line | nest n e | дroup e

| e1 <? e2 | f x1 . . . xn
p ::= x | C p1 . . .pn

Figure 4. The syntax of the core language of FliPpr

In this paper, we only focus on the core language and its
parser generation semantics because (1) the host language,
Haskell, will provide the functionalities of the surface lan-
guage and thus eliminate the need of it, and (2) the part
about pretty-printing semantics is rather straightforward,
involving only Wadler’s combinators, and is thus omitted.

2.1.1 The Core Language of FliPpr
Figure 4 gives the syntax of the core language. A program
consists of rules of the form f p1 . . . pn = e , where eachpi is

a pattern defined in the standard way and e is an expression.
An expression ranges over Wadler’s combinators (text s ,
e1 <> e2, line , nest n e and дroup e), biased choice e1 <? e2,
and treeless [35] function call f x1 . . . xn . Here, being
treeless means that only variables can serve as arguments of
functions. The programs are expected to be linear, which is
checked statically in the original FliPpr, but at run-time in
this paper.
We briefly explain the behavior of Wadler’s combina-

tors [36] in pretty-printing.
• text s renders the string s in pretty-printing.
• e1 <> e2 represents concatenation.
• line represents a new line with indentation according
to the current indentation level. However, when placed
under дroup, it can also be rendered as a single space.
• nest n e increases the current indentation level by n
in e .
• дroup e smartly chooses layouts in e with line that
either works as a new line or a single space.

More specifically,дroup e says that “render e as horizontal as
possible, and otherwise render e with newlines with appro-
priate indentation indicated bynest”. Thus, the pretty-printer
in Fig. 1 and 2will print Sub (Sub One One) (Sub One One)
as

1 - 1 - (1 - 1) or 1 - 1
- (1 - 1)

or
1 - 1
- (1

- 1)

depending on the screen width, assuming that nil, lineN and
spaceN behaves as text "", line and text " ", respectively.
Parsing semantics is designed to parse all the printer’s

outputs, and in addition non-pretty strings which cannot
be produced by a pretty-printer but are nevertheless valid
grammatically. To achieve this, FliPpr reinterprets Wadler’s
combinators in the parsing direction to accommodate a vari-
ety of strings. Specifically, line is reinterpreted as arbitrary
non-empty spaces, and nest and дroup are simply ignored
because they only affect the behavior of lines. Moreover, a
new operator e1<?e2 is introduced to admit redundant spaces
and extra parentheses in places. Intuitively, e1 <? e2 means
that e2 is also a valid string representation but e1 is prettier.
That is, in pretty-printing, the operator simply ignores e2 and
behaves as e1, but in parsing, it behaves as nonderministic
choice between e1 and e2. The derived operators nil, lineN ,
and spaceN we have seen in Figure 1 are defined by using
<? as below.

white = text " " <? text "\n" -- parses a white space
space = white <> nil -- parses one-or-more whites
nil = text "" <? space -- parses zero-or-more whites
lineN = line <? text "" -- parses zero-or-more whites
spaceN = space <? text "" -- parses zero-or-more whites

Notice that the last three functions have the same behavior
in parsing, but not in pretty-printing.

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

As a result, non-pretty strings such as “ (1 -(1))”
become parsable, together with the pretty ones we have seen
above.

2.1.2 Parser-Generation Semantics
A CFG with actions is generated from a pretty-printer defi-
nition written in the FliPpr language. From a program in the
FliPpr core language, the following steps are taken for the
generation.

1. Prepare nonterminals Ff and Ee for each function f
and expression e in a program, where parsing results
of Ff and Ee ’s are arguments of f and a value environ-
ment for e such that they evaluates to a parsed string,
respectively.

2. For each rule f p1 . . . pn = e , add the rule:

Ff → Ee {let θ = $1 in (p1θ , . . . ,pnθ)}.

3. For each expression e , add the rule(s) as below.
• When e = text s , add:

Etext s → s {∅}

• When e = e1 <> e2, add:

Ee1<>e2 → Ee1 Ee2 {$1 ∪ $2}

• When e = line , add:

El ine → White+ {∅}

• When e = nest n e ′ or e = дroup e ′, add:

Ee → Ee ′ {$1}

• When e = e1 <? e2, add:
Ee1<?e2 → Ee1 {$1}
Ee1<?e2 → Ee2 {$1}

• When e = f x1 . . . xn , add:

Ef x1 ... xn → Ff

{
let (v1, . . . ,vn) = $1
in {x1 = v1, . . . ,xn = vn }

}
Here,White+ is the nonterminal that generates non-empty
white spaces.

The parser is correct with respect to the (Correctness
Law) [24].

2.2 Unembedding Transformation
In this section, we review the unembedding transforma-
tion [2, 19], which transforms syntax in a tagless-final style [4]
to de Bruijn terms. We use the simply-typed λ calculus as an
example, whose syntax in the tagless-final style is already
given in Section 1. The de Bruijn terms are represented by
the following GADTs.1

data DLam Γ a where
Var :: In a Γ → DLam Γ a

1The code is actually incorrect in Haskell, as Γ is an uppercase letter and can-
not be recognized as a (type) variable. We abuse the notation to emphasize
that Γ represents a typing environment.

Abs :: DLam (Γ,a) b → DLam Γ (a → b)

App :: DLam Γ (a → b) → DLam Γ a → DLam Γ b

data In a Γ where
Z :: In a (Γ,a)

S :: In a Γ → In a (Γ,b)

Converting de Bruijn terms to the tagless-final style is rather
easy. However, the opposite is not straightforward because
we need to recover the type environment information.

The conversion is realized by preparing an instance of
Lam; to do so, we prepare the following datatypes.

data U a = U {unU :: ∀Γ.TEnv Γ → DLam Γ a}

data TEnv Γ where
TEmp :: TEnv ()

TExt :: TEnv Γ → Proxy a → TEnv (Γ,a)

The type U a essentially represents the dependent product∏
Γ .DLam Γ a, but since Haskell does not allow value-level

pattern matching on types, we pass Γ’s value-level represen-
tation TEnv Γ instead. The datatype Proxy is a phantom type
defined as data Proxy a = Proxy in Data.Typeable.

Then, we are ready to give an instance of Lam. It is rather
straightforward to define app, which just passes TEnv Γ.

instance Lam U where
app (U f) (U a) = U (λγ → App (f γ) (a γ))

However, the definition of abs is much trickier. Its basic
structure is as below.

abs f = U $ λγ →

let γa = TExt γ Proxy
in Abs (unU (f (U $ λγ ′ → Var ???))) γa

Since the Abs’s argument must have the type DLam (Γ,a) b,
we pass γa :: TEnv (Γ,a) to the result of f :: U a → U b to
obtain a value of the type. But, the problem comes in the ???
part, which must have type In a Γ′ where Γ′ comes from
the argument γ ′ :: TEnv Γ′. We must convert the variable
Z :: In a (Γ,a) introduced by Abs to In a Γ′.

Atkey [1] proved by parametricity that Γ′ must be as big
as (Γ,a); that is, Γ′ = ((. . . ((Γ,a),a1), . . .),an) for some n.
Intuitively, this says that f must be a context consisting of
Abs, App, Var and a hole, and thus its argument can only
occur in a deeper position. This suggests a coercion coer ::
TEnv Γ → TEnv Γ′ → In a Γ → In a Γ′ that applies S n
times to complete the definition.

abs f = U $ λγ →

let γa = TExt γ Proxy
in Abs (unU (f (U $ λγ ′ → Var (coer γ γ ′ Z))) γa

The coercion function fails if Γ′ is not as big as (Γ,a), but
such a case cannot happen due to parametricity [1]. Thus,
the following conversion is indeed total.

unemb :: (∀e .Lam e ⇒ e a) → DLam () a

unemb (U e) = e TEmp

Embedding Invertible Languages with Binders Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

We omit the definition of coer (see Appendix A.1).

3 Embedding Non-Recursive FliPpr
This and the next sections discuss embedding of FliPpr by
using the unembedding transformation [2]. This section fo-
cuses on non-recursive programs and a slight reformulation
of FliPpr so that it can pretty-print arbitrary user-defined
Haskell datatypes. The treatment of recursion is left for Sec-
tion 4.

3.1 Interoperable FliPpr
We first reformulate FliPpr so that it admits user-defined
Haskell types. We replace global function definitions with λ
abstractions/applications while keeping the treeless restric-
tion. Also, we give a semantics based on parser combinators.

3.1.1 New Syntax and Type System
The new syntax of FliPpr is as below.

e ::= λx .e | e x | text s | e1 <> e2 | e1 <? e2
| case x of {(ϕi → xi) → ei }i
| let () = x in e | let (x1,x2) = x in e

For simplicity, we omit line , nest n e and дroup e because
their treatments are straightforward (from a parsing perspec-
tive). Here, pattern-matching functionality in the original
core language is separated into case analysis by case and
decomposition by let, where ϕi in case is a (expected to be
decidable) partial injection of which failure indicates that
the pattern (ϕi → xi) does not match. Notice that the lan-
guage still has the treeless restriction; the second operand
of a function application must be a variable, and scruitinee
expressions must also be variables.

The language has the following types.

τ ::= D | ι → τ (first-order printer types)
ι ::= (Haskell’s datatypes) (input types)

Notice that ι can be any Haskell datatype as it will be manip-
ulated by ϕ that also comes from Haskell. The typing rules
are shown in Fig. 5. The judgment Γ ⊢ e : τ reads that, under
type environment Γ, e has type τ , where Γ maps variables to
ι types. Here, PartialInj is defined by

type PartialInj ι ι′ = (ι → Maybe ι′, ι′ → ι)

representing partial injections.

3.1.2 Semantics of New FliPpr
We give its semantics based on Haskell programs with ap-
plicative [28] parser combinators. We assume a parser type
Parser a and the following combinators.
• (<$>) :: (a → b) → Parser a → Parser b
• (<*>) :: Parser (a → b) → Parser a → Parser b
• ptext :: String→ Parser String
• pfail :: Parser a
• (<|>) :: Parser a → Parser a → Parser a

Γ,x : ι ⊢ e : τ
Γ ⊢ λx .e : ι → τ

Γ ⊢ e : ι → τ Γ(x) = ι

Γ ⊢ e x : τ
{Γ ⊢ ei : D}i op ∈ {text s, (<>), (<?)}

Γ ⊢ op e1 . . . en : D
Γ(x) = ι {ϕi :: PartialInj ι ι′ Γ,xi : ι′ ⊢ ei : D}i

Γ ⊢ case x of {(ϕi → xi) → ei }i : D
Γ(x) = () Γ ⊢ e : τ
Γ ⊢ let () = x in e : τ

Γ(x) = (ι1, ι2) Γ,x1 : ι1,x2 : ι2 ⊢ e : τ
Γ ⊢ let (x1,x2) = x in e : τ

Figure 5. Typing Rules

Here, <$> is fmap; p1 <*>p2 parses the concatenation of p1 and
p2 and then applies a parsing result of p1 to that of p2; ptext s
parses s and returns s itself; pfail always fails; and p1 <|> p2
nondeterministically choose between p1 and p2. We do not
assume any concrete implementation of these combinators,
but state that Parser a with the combinators denotes non-
recursive CFGs.

Then, we look at the translation of terms-in-context.

JΓ ⊢ e : τ K :: SemΓ,τ

We are expecting the following two isomorphisms on Sem:

SemΓ,D ∼ Parser JΓK SemΓ, ι→τ ∼ SemΓ,x :τ ,τ

The former isomorphism says that a D-typed expression will
be translated to a parser of which the parsing results are
the values of the free variables in it. The latter says that
Sem must have a “closed” structure to have abstractions
and applications. Following this observation we can define
SemΓ,τ = Parser (R JΓK τ). Here, JΓK is defined as:

J∅K = () JΓ,x : ιK = (JΓK ,Maybe ι)

Accordingly, R, representing parsing results, is defined as:

data R a τ where
ResD :: a → R a D
ResF :: Eq ι ⇒ R (a,Maybe ι) τ → R a (ι → τ)

The constraint Eq will be used for handling non-linear uses
of variables.

We also provide functions that manipulate these datatypes.
It is convenient to have a map function for R a τ .

rmap :: (a → b) → R a τ → R b τ

We omit the definition of rmap, which is straightforward.
The function upd tries to update a given position in an envi-
ronment.

upd :: Eq ι ⇒ In (Maybe ι) Γ → Maybe ι → Γ → Γ

upd Z a (θ ,a′) = (θ ,a ⊕ a′)

upd (S n) a (θ ,b) = (upd n a θ ,b)

Here, ⊕ is the merging function defined as:

(⊕) :: Eq a ⇒ Maybe a → Maybe a → Maybe a
Nothing ⊕ b = b

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

JΓ ⊢ λx .e : ι → τ K = fabs JΓ,x : ι ⊢ e : τ K
JΓ ⊢ e x : τ K = fapp JΓ ⊢ e : ι → τ K JΓ(x) = ιK
JΓ ⊢ text s : DK = ftext s
JΓ ⊢ e1 <> e2 : DK = fcat JΓ ⊢ e1 : DK JΓ ⊢ e2 : DK
JΓ ⊢ e1 <? e2 : DK = fchoice JΓ ⊢ e1 : DK JΓ ⊢ e2 : DK
JΓ ⊢ case x of {(ϕi→xi) → ei }i K =

fcase JΓ(x) = ιK [br ϕi JΓ,xi : ι′ ⊢ ei : τ K]i
JΓ ⊢ let () = x in e : τ K = fununit JΓ(x) = ()K JΓ ⊢ e : τ K
JΓ ⊢ let (x1,x2) = x in e : τ K =

funpair JΓ(x) = (ι1, ι2)K JΓ,x1 : ι1,x2 : ι2 ⊢ e : τ K

Figure 6. Translation of Terms-in-Context

Just a ⊕ Nothing = Just a
Just a ⊕ Just a′ | a a′ = Just a

Intuitively, upd x a θ computes θ ∪ {x 7→ a}, which fails
when θ maps x to some value other than a. The merging
function can be extended to environments mergeEnvJΓK ::
JΓK → JΓK → JΓK, and then to parsing results mergeJΓK ::
R JΓK D→ R JΓK D→ R JΓK D. Intuitively,mergeEnvΓ θ θ ′

represents θ ∪ θ ′, which fails when θ (x) , θ ′(x) for some
x . These merging functions are type-indexed and are not di-
rectly expressible in Haskell, but as we have seen in Section 2
the solution is to use the unembedding technique of passing
the value-level representation of Γ as a parameter. We also as-
sume the typed-indexed function emptyEnvJΓK :: JΓK which
denotes the environment that consists only of Nothing.

In advance to defining the translation of terms-in-context,
we define the translation JΓ(x) = ιK :: In (Maybe ι) JΓK of
variable look-up as below.

J(Γ,y : ι′) (x) = ιK = S JΓ(x) = ιK
J(Γ,x : ι) (x) = ιK = Z

For example, for Γ = Jx1 : ι1, . . . ,xn : ιnK, we have JΓ(xi) = ιiK =
Sn−i+1 Z. That is, a variable is translated to a de Bruijn index.
Now, we are ready to define the translation of terms-in-

context as in Fig. 6. To emphasize the compositionality of
the definition, the translation uses the Haskell functions
fabs, fapp, . . . , funpair given in Fig. 7, which can be seen as
a shallowly embedded version of de Brujin representation
of the new FliPpr, and will be used in the unembedding.
The definitions look complicated due to the manipulation of
R Γ τ values, but actually implement the same translation as
shown in Section 2.1.2, except that function definitions and
calls are separated into smaller steps. Note that branching is
implemented by fcase, conversions of input data is by br , and
fununit and funpair are responsible for data decomposition.

3.2 Embedded Non-Recursive FliPpr
With the ground prepared, the embedding itself is rather
straightforward.We simply represent the syntax in the tagless-
final style and then converts it to de Bruijn terms. Here, we

fabs :: Eq ι ⇒ Parser (R (Γ,Maybe ι) τ) → Parser (R Γ (ι → τ))

fabs p = ResF <$> p

fapp :: Eq ι ⇒ Parser (R Γ (ι → τ)) → In (Maybe ι) Γ →
Parser (R Γ τ)

fapp p x = (λ(ResF r) → rmap (λ(θ ,a) → upd x a θ) r) <$> p

ftext :: Parser (R Γ D)
ftext s = const (ResD emptyEnvΓ) <$> ptext s

fcat :: Parser (R Γ D) → Parser (R Γ D) → Parser (R Γ D)
fcat p1 p2 = mergeΓ <$> p1 <*> p2
fchoice :: Parser (R Γ D) → Parser (R Γ D) → Parser (R Γ D)
fchoice p1 p2 = p1 <|> p2
fcase :: Eq ι ⇒ In (Maybe ι) Γ →

[Parser (R (Γ,Maybe ι) D)]→ Parser (R Γ D)
fcase x ps = rmap (λ(θ ,a) → upd x a θ) <$> foldr (<|>) pfail ps
br :: Eq ι ⇒ PartialInj ι ι′ →

Parser (R (Γ,Maybe ι′) D) → Parser (R (Γ,Maybe ι) D)
br (,h) p = rmap (λ(θ , Just a) → (θ , Just (h a))) <$> p

fununit :: Eq ι ⇒ In (Maybe ι) Γ → Parser (R Γ τ)

fununit x p = rmap (upd x ()) <$> p

funpair :: (Eq ι1, Eq ι2) ⇒ In (Maybe (ι1, ι2)) Γ →

Parser (R ((Γ,Maybe ι1),Maybe ι2) τ) → Parser (R Γ τ)

funpair x p =

rmap (λ((θ , Just a), Just b) → upd x (Just (a,b))) <$> p

Figure 7. Semantics of Constructs as Haskell Functions

use shallow-embedding instead of ASTs in a datatype for the
representation of de Bruijn terms.

3.2.1 Typeclass FliPprE
The following is the type class that represents the syntax of
non-recursive FliPpr in the tagless-final style.

class FliPprE a e | e → a where
abs :: Eq ι ⇒ (a ι → e τ) → e (ι → τ)

app :: Eq ι ⇒ e (ι → τ) → a ι → e τ

text :: String→ e D
(<>) :: e D→ e D→ e D
(<?) :: e D→ e D→ e D
case_ :: Eq ι ⇒ a ι → [Branch a e ι τ]→ e τ

unpair :: (Eq ι1, Eq ι2) ⇒

a (ι1, ι2) → (a ι1 → a ι2 → e τ) → e τ

ununit :: a () → e τ → e τ

data Branch a e ι τ where
∀ι′.Eq ι′ ⇒ Branch (PartialInj ι ι′) (a ι′ → e τ)

Since FliPpr has two syntactic categories: variables and ex-
pressions, the class FliPprE a e takes two type variables
a and e , respectively. The code is similar to the syntax in
Section 3.1.1 except that we used functions for binders.

Embedding Invertible Languages with Binders Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

3.2.2 Instance of FliPprE for Parsing
We then implement the semantics of FliPpr by giving in-
stances of FliPprE. Here, we focus on the parsing semantics,
as the implementation of the pretty-printing semantics is
straightforward.

First, we prepare the datatypes towhicha and e of FliPprE a e
are instantiated to. Recall that a variable look-up and an ex-
pression (in a context) are translated to values in In (Maybe ι) Γ
and Parser (R Γ τ), respectively. Accordingly, a and e will
be instantiated to the following datatypes.

data PA ι = PA {unPA :: ∀Γ.TEnv Γ → In (Maybe ι) Γ}
data PE τ = PE {unPE :: ∀Γ.TEnv Γ → Parser (R Γ τ)}

Similarly to the original unembedding (Section 2.2), these
types take value-level representations of Γ, TEnv Γ. A sub-
tle difference is that we use shallow embedding instead of
datatypes for de Bruijn terms. Also, since elements of Γ can
be Nothing, we have changed the definition of TEnv as:

data TEnv γ where
TEmp :: TEnv ()

TExt :: Eq ι ⇒ TEnv r → Proxy ι → TEnv (r ,Maybe i)

Then, we implement the method of FliPprE step-by-step.
Again, app is rather easy to implement; we just passγ around.

instance FliPprE PA PE where
app :: PE (ι → τ) → PA ι → PE τ

app (PE f) (PA a) = PE $ λγ → fapp (f γ) (a γ)

Notice that we use shallowly embedded construct fapp in-
stead of a constructor. This applies to the implementation of
other methods as well, such as abs, as below.

abs :: (PA ι → PE τ) → PE (ι → τ)

abs f = PE $ λγ →

let γι = TExt γ Proxy
in fabs $ unPE (f (PA $ λγ ′ → coer γι γ ′ Z)) γι

One would notice that we simply replaced Abs in Section 2.2
by its semantics fabs in the above program.
The implementation of Wadler’s combinators and non-

deterministic choice is easy, as it does not involve binders.

text :: String→ PE D
text s = PE $ λγ → ftext γ s

(<>) :: PE D→ PE D→ PE D
PE p1 <> PE p2 = PE (λγ → fcat γ (p1 γ) (p2 γ))

(<?) :: PE D→ PE D→ PE D
(PE p1) <? (PE p2) = PE (λγ → fchoice (p1 γ) (p2 γ))

Notice that now ftext and fcat take γ for type-indexed func-
tions emptyEnv and merge that are used inside.

The case_ method is implemented by fcase and br as below.

case_ :: Eq ι ⇒ PA ι → [Branch PA PE ι τ]→ PE τ

case_ (PA a) bs = PE $ λγ →

let h (Branch ϕ f) =

let γι′ = TExt γ Proxy
x = PA $ λγ ′ → coer γι′ γ ′ Z

in br ϕ (unPE (f x) γι′)

in fcase (a γ) (map h bs)

Notice that γι′ has type TEnv (Γ,Maybe ι′), where Γ and ι′
come from γ :: TEnv Γ and ϕ :: PartialInj ι ι′.
The implementation of ununit is also straightforward as

it does not change the type environment.

ununit :: PA () → PE τ → PE τ

ununit (PA a) (PE e) = PE $ λγ → fununit (a γ) (e γ)

In contrast, we need to use coercions in unpair as it involves
binders.

unpair :: (Eq ι1, Eq ι2) ⇒

PA (ι1, ι2) → (PA ι1 → PA ι2 → PE τ) → PE τ

unpair (PA a) k = PE $ λγ →

let γ2 = TExt (TExt γ Proxy) Proxy
x1 = PA $ λγ ′ → coer γ2 γ ′ (S Z)
x2 = PA $ λγ ′ → coer γ2 γ ′ Z

in funpair $ unPE (k x1 x2) γ2

Both functions just call corresponding implementations fununit
and funpair , but the latter involves coercions.

3.3 Programming with FliPprE

Using raw unpair/ununit with Branch is sometimes tedious
as they are too primitive. Haskell programming actually
helps in this situation. For example, let us consider the sub-
traction language (Section 2.1.1) again. Assume that it is
defined by the following datatype.

data Exp = One | Sub Exp Exp

Then, we can define the following functions.

unOne :: FliPprE a e ⇒ e t → Branch a e Exp t

unOne e = Branch (p, λ() → One) (λa → ununit a e)

where p One = Just ()
p = Nothing

unSub :: FliPprE a e ⇒

(a Exp→ a Exp→ e t) ⇒ Branch a e Exp t

unSub k = Branch (p,q) (λx → unpair x k)

where p (Sub x y) = Just (x ,y)
p = Nothing
q (x ,y) = Sub x y

These functions serve as invertible pattern matching for
better programming. For example, a prefix-notation printer
for Exp can be defined as below.

prefix :: FliPprE a e ⇒ a Exp→ e D
prefix x = case_ x
[unOne $ text "1",
unSub $ λx y → text "-" <> prefix x <> prefix y]

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

Here, we used Haskell recursions, which is enough for LL
grammars and certain parser combinators such as parsec.

4 Embedding Recursive Definitions
Using Haskell-level recursions is nice, but it severely lim-
its the expressive power. For example, we cannot express
pretty-printers that are converted to left-recursive grammars
(such as Fig. 2 and 3); parser combinators without explicit
handling of recursions loop for them. Thus, we need to treat
recursions explicitly so that we can generate arbitrary CFGs
with conversions or analysis on them.

One natural solution would be having a fixed-point com-
binator. This would be achieved by adding a method fix ::
(e τ → e τ) → e τ to the class FliPpr a e . This solu-
tion works, but is unsatisfactory. The method itself does
not provide a way to share generated sub-grammars, and
will result in grammar-size blow-up for mutual recursions.
We could use a variant that supports mutual recursions like
fix :: Functor2 t ⇒ (t e → t e) → t e , but still using fixed-
point combinators prevents access to Haskell’s syntactic
support for defining recursions.
Thus, we resort to marking where recursions occurs, fol-

lowing Earley2 and Frost et al. [11]’s parser combinators.
This still allows us to define recursions by using Haskell’s
syntactic support under the RecursiveDo extension. Though
this means that programmers now have the requirement of
marking recursions, we believe it is not an onerous task.

Specifically, we use the following methods for marking.

class (FliPprE a e,MonadFixm) ⇒

FliPprDm a e | e → a, e →m where
mark :: e τ →m (e τ)

local ::m (e τ) → e τ

The method mark marks recursive definitions. For example,
nil and space in Section 2.1.1 will be implemented as below.

mkNilSp :: FliPprEm a e ⇒m (e D, e D)
mkNilSp = do let white = text " " <? text "\n"

rec nil ← mark $ text "" <? space
space ← mark $ white <> nil

return (nil, space)

We will use mkNilSp as do {(nil, space) ← mkNilSp; . . . },
where mark together with the monad ensures that nil and
space will be shared; that is, nonterminals will be generated
for nil and space, which will be used where we use nil and
space, instead of copying their definitions.
The function local does the opposite; it cancels mark to

convert sharable objects to unsharable ones. This is useful
when we define recursions parameterized by other pretty-
printing results, like manyParens function in Section 2 as
below.

2https://hackage.haskell.org/package/Earley

manyParens :: FliPprDm a e ⇒ e D→ e D
manyParens d = local $ do

rec x ← mark $ d <? text "(" <> nil <> x <> nil <> text ")"
return x

Here, we assumed that nil appears in a context. Notice that it
does not make sense to share manyParens d as it must yield
different grammars for d . The use of local is also prompted
by static typing, as without it manyParens will end up with
a monadic type as a result of mark.

4.1 Representation of Grammars
Similar to the previous section, we focus on parsing seman-
tics. Since now we need to generate recursive grammars, we
need to specify how we represent them. For simplicity we
shall use references provided by ST s monad; it also has the
added benefit of working well with the marking approach,

data Grammar s a = G {unG :: ST s (StParser s a)}

The datatypes Grammar s and StParser s are assumed to
share the same APIs (i.e., ptext, (<$>), (<*>), pfail and (<|>))
with Parser. A main difference from Parser is that the date-
types additionally have the following API for recursive defi-
nitions.

nt :: STRef s (ST s (StParser s a)) → StParser s a

Intuitively, nt ref represents a non-terminal, where ref
points to its definition.

One of the uses of nt is to represent sharing.

gmark :: Grammar s a → ST s (Grammar s a)
gmark (Gm) = do ref ← newSTRef m

return $ G (return (nt ref))

The gmark can be used to construct recursive grammars via
MonadFix operations.

as :: ST s (Grammar s String)
as = do rec x ← gmark $ (ptext "") <|> ((++) <$> ptext "a" <*> x)

return x

The argument of nt is a reference to a monadic computation
instead of a pure expression, which essentially represents
laziness. This is not so useful for now, but will be when we
manipulate grammars, where we want also to delay monadic
computation such as dereferencing.

4.2 Instance of FliPprD for Parsing
The changes to the underlying parser means that the PE type
in Section 3.2.2 needs to be adapted; it now takes an addi-
tional type parameter s and uses Grammar s (R Γ τ) instead
of Parser (R Γ τ). The rest of the code remains unchanged
because Grammar s a and Parser a share the same APIs.
Now, we are ready to give a parsing instance. The first

step is to prepare the following monad.

data PM s a = PM (∀Γ.TEnv Γ → ST s a)

Embedding Invertible Languages with Binders Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

Notice that the above datatype is essentially a composition of
Reader and ST monads with universal quantification on the
reader argument. We omit the Functor, Applicative, Monad
andMonadFix implementation of this datatype as they are
standard. The TEnv Γ part will be used for communication
between local and mark; local captures TEnv Γ and mark
uses it. We also prepare the following datatype and function
for this communication.

Then, we give a concrete instance of FliPprD, as below.

instance FliPprD (PM s) PA (PE s) where
mark :: PE s τ → PM s (PE s τ)

mark (PE e) = do
SomeRep γ ← askTEnv
д ← PM $ λ → gmark (e γ)

return $ PE $ λγ ′ → rmap (embedEnv γ γ ′) <$> д

local :: PM s (PE s τ) → PE s τ

local (PMm) = PE $ λγ → G $

m γ >>= λe → unG (unPE e γ)

Here, SomeRep and askTEnv are used for controlling type
inference.

data SomeTEnv = ∀Γ.SomeTEnv (TEnv Γ)

askTEnv :: PM s SomeTEnv
askTEnv = PM (λγ → return $ SomeTEnv γ)

The function embedEnv :: TEnv Γ → TEnv Γ′ → Γ → Γ′

converts environments by adding Nothing to the right. The
idea of local is to capture the value-level type environment
of where local is called. The captured type environment γ
will be used by mark e to evaluate e , and the marked result
will be used under a deeper context γ ′.

Similarly to coer , we expect Γ′ being at least as big as Γ (or,
Γ is a sub-environment of Γ′). Unfortunately, this property
is not guaranteed by Atkey et al. [2]’s unembedding, but
we believe that it holds as marked recursions only occur
inside local. Note that to use the marked functions outside
local, they have to be put as the return value of the argument
of local such as local (do {rec x ← mark . . . ; return x }).
We believe that this property could be proved by a similar
discussion to Atkey [1], which is left for future work.

Finally, we define the parsing interpretation as below.

parser :: (∀m a e .FliPprDm a e ⇒m (e (ι → D)))
→ (∀s .Grammar s ι)

parser (PMm) = G $ do e ←m TEmp
unG (f <$> unPE e TEmp)

where f :: R () (ι → D) → ι

f (ResF (ResD (, Just a))) = a

5 Further Improvements
We discuss several improvements of the basic embedded
implementation of FliPpr, from both programming and effi-
ciency perspectives.

5.1 Wrapping Raw Type Variables
The current APIs of the embedded FliPpr expose raw type
variables a and e . This is inconvenient if we want to make
FliPpr syntax as an instance of a type class. For example, we
may want to use the same APIs for both FliPpr programs
and the usual pretty-printing.
Let us assume that the APIs developed so far are located

under a module Core. Then, we provide a “wrapped” version
of the APIs as below.

newtype A a ι = A {unA :: a ι}

newtype E a τ = E {unE :: a τ }

abs :: (FliPprE a e, Eq ι) ⇒ (A a ι → E e τ) → E e (ι → τ)

abs f = E (Core.abs (unE ◦ f ◦ A))
. . .

With this wrapped APIs, we can make instances without
worrying about overlapping instances. For example, we can
make FliPpr programs as a Monoid instance.

instance (τ ∼ D) ⇒ Monoid (E e τ) where
mempty = text ""

mappend (E e1) (E e2) = E (e1 Core.<> e2)

Here, the constraint τ ∼ D saves us from cluttering the con-
straints Monoid (E e τ) for uses of mempty and mappend.

5.2 Inter-conversion from/to Haskell Functions
Using app and abs explicitly for every function definition and
application is tedious. To resolve the issue, we provide the
following type class for inter-conversion between E e (ι1 →
· · · → ιn → D) and A a ι1 → · · · → A a ιn → E e D, by
using abs and app.

class Repr (a :: ∗ → ∗) e τ r

| e → a, e τ → r , r → a e τ where
toFunction :: E e τ → r

fromFunction :: r → E e τ

The type class has the following instances.

instance FliPprE a e ⇒ Repr a e D (E e D) where . . .
instance (FliPprE a e,Repr a e τ r , Eq ι) ⇒

Repr a e (ι → τ) (A a ι → r) where . . .

Weomit the definitions of toFunction and fromFunction, which
follow straightforwardly from their types.

With this type class, we can define the following function.

define :: (FliPprDm a e,Repr a e τ r) ⇒ r →m r

define f = fmap toFunction $mark (fromFunction f)

Function define eliminates direct use of app and abs. Now
we can write

do rec f ← define $ λx → . . . f x . . .

. . . f y . . .

instead of:

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

pprMain :: FliPprD a e ⇒ A a Exp→ E e D
pprMain = do

(nil, space) ← mkNilSp
spaceN ← define $ space <? text ""
lineN ← line <? text ""

let parens d = text "(" <> nil <> x <> nil <> text ")"
let parensIf b d = if b then parens d else d
let manyParens d = local $ do rec x ← d <? parens x

return x

rec ppr ← defines [False, True] $ λb x → manyParens $
parensIf b $ case_ x

[unOne $ text "1",
unSub $ λx y →

ppr False x <>

nest 2 (lineN <> text "-" <> spaceN <> ppr True y)]
return $ ppr False

Figure 8. An Embedded FliPpr Program Equivalent to Fig. 1

do rec f ← mark $ abs $ λx → . . . app f x . . .

. . . app f y . . .

5.3 Parameterized Recursions
When writing pretty-printers, we often pass a precedence
level of a context to decide whether a pretty-printer produces
a pair of opening and closing parentheses. For the simple
subtraction language, there are only two precedence levels,
and thus we pass booleans in Fig. 1. This way of handling
precedence is not directly allowed by mark or define.

Thus, we define defines as below.

defines :: (Eq k,Ord k, FliPprDm a e,Repr a e τ r) ⇒

[k]→ (k → r) →m (k → r)

defines ks f = do
rs ← mapM (define ◦ f) ks
let tab = Data.Map.fromList $ zip ks rs
return $ λk → fromJust $ (Data.Map.lookup k tab)

The function fromJust in Data.Maybe removes Just, which
fails if the input is Nothing. The definition might look com-
plicated, but defines [k1, . . . ,kn] f essentially defines each
f k , and makes a table for looking-up a defined function.
As a result, we can write the pretty-printer for the simple

subtraction language as Fig. 8.

5.4 Special Treatment of Spacing Combinators
One may find it tedious to copy the definitions of nil, space,
spaceN and lineN to every pretty-printing definition. We
may apply local to these functions, but then the grammars
generated by the combinators are no longer shared.
Thus we include them to the FliPpr APIs, i.e., FliPprE’s

class methods. This is also useful when we parse languages

that support comment syntax, where wewant spacing combi-
nators to in addition skip comments in parsing. By including
them in the APIs, white can be specified at parser genera-
tion time, making invertible pretty-printing combinators like
manyParens more reusable.

5.5 Implementation of Type/Variable Environments
The value-level type TEnv is represented as a list-like struc-
ture, and as a result the coercion coer γ γ ′ takes time qua-
dratic to the size of γ , which is unacceptable. Another source
of inefficiency is the representation of value environments;
mergeEnv γ θ θ ′ takes time linear to the size of γ /θ /θ ′, while
most of elements in θ and θ ′ are often Nothing.
To avoid these overhead, we just pass the size of γ (i.e.,

the nesting depth of binders) and use unsafeCoerce if needed.
We also change the representation of value environments so
that a consecutive block of elements can be Nothing. This
makes coer , mergeEnv, emptyEnv and embedEnv efficient.
The function upd n still takes time linear to n, but it is less
problematic as n tends to concern recently introduced vari-
ables and therefore is usually small.

6 A Larger Example
In this section, we demonstrate the programmability of em-
bedded FliPpr by defining an invertible pretty-printer for
the following AST. As we will see, the embedding not only
have preserved the benefits of FliPpr, but also enhanced its
programmability through the interaction with the host lan-
guage. Reference code for the original FliPpr version and
non-invertible pretty-printer version can be found in Appen-
dix A.2 for comparison.

data Exp = Num Int | Var String | Let String Exp Exp
| Sub Exp Exp | Div Exp Exp

Despite being simple, the above expression language con-
tains common features in programming languages: keywords,
constants and operators with precedence. We assume decom-
posing functions such as unSub for the constructors. Our
current implementation uses Template Haskell to generate
such functions.
Let us consider constants and variables. In the original

FliPpr, this is done by using the text (f x) as r expression
that pretty-prints f x and parses the regular expression r
with conversion f −1, for an injection f . For example, an in-
teger n is printed by text (itoa n) as -?[0-9]+ and variable
x is printed by text x as [a-z][a-zA-Z0-9]*-let, where -
outside of square brackets represents subtraction.

So our first goal is to give an equivalent expression in the
embedded FliPpr. First, we prepare a function that makes a
printer from a deterministic finite-state automaton (DFA).

type Q = Int
data DFA = DFA Q [(Q, [(Char,Q)])] [Q]
fromDFA :: FliPprDm a e ⇒ DFA→m (A a String→ E e D)

Embedding Invertible Languages with Binders Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

fromDFA (DFA init tr fs) = do
rec abort ← define abort
rec f ← defines (map fst tr) $ λq s → case_ s $

[unNil $ (if elem q fs then text "" else abort),
unCons $ λa r → case_ a

[is c $ text [c] <> (f q′ r) |

(c,q′) ← fromJust (lookup q tr)]]
return (f init)

The function is, which works as an invertible constant pat-
tern, is defined as below.

is :: (Eq ι, FliPprE a e) ⇒ ι → E e t → Branch (A a) (E e) ι t

is c = Branch (p, const c) (λa → ununit a e)

where p x = if x c then Just () else Nothing

Assuming that we already have DFAs dfanum and dfavar
for integers and variable names, respectively, then we can
make a function for generating printers.

mkPprInt :: FliPprDm a e ⇒m (A a Int→ E e D)
mkPprInt = do f ← fromDFA dfanum

retrun $ λx → case_ x [itoa $ f]
mkPprVar :: FliPprDm a e ⇒m (A a String→ E e D)
mkPprVar = fromDFA dfavar

Here, itoa is defined by itoa = Branch (Just ◦ show, read).
Those functions will be used as pprInt ← mkPprInt to avoid
duplicating nonterminals to parse integers or variables.
Next, we prepare a template for pretty-printers of arith-

metic expressions.
type Prec = Int
data Assoc = AL | AR | AN
data Fixity = Fixity Prec Assoc
opP :: FliPpr a e ⇒ Fixity→ (E e τ → E e τ → E e τ) →

(Prec→ A a ι1 → E e τ) → (Prec→ A a ι2 → E e τ) →

Prec→ A a ι1 → A a ι2 → E e τ

opP (Fixity k opPrec) f p1 p2 k x y =

let (d1,d2) = case a of {AL→ (0, 1);AR→ (1, 0); → (0, 0)}
in parensIf (k > opPrec) $

f (p1 (opPrec + d1) x) (p2 (opPrec + d2) y)

Now, we are ready to define a pretty-printing function for
the language.

ppr :: FliPprDm a e ⇒m (A a Exp→ E e D)
ppr = do

pprInt ← mkPprInt
pprVar ← mkPprVar
let op s d1 d2 = дroup $

d1 <> nest 2 (lineN <> text s <> spaceN <> d2)

rec pprE ← defines [0..3] $ λk e → manyParens $ case_ e $
[unNum $ pprInt,
unVar $ pprVar,
unSub $ opP (Fixity 1 AL) (op "-") pprE pprE k,

unDiv $ opP (Fixity 2 AL) (op "/") pprE pprE k,

unLet $ λx e1 e2 → parensIf (k > 0) $ дroup $

text "let" <+> pprVar x <> nil <> text "=" <>

nest 2 (lineN <> pprE 0 e1) <>
line <> text "in" <+> pprE 0 e2]

return (λx → nil <> pprE 0 x <> nil)
where x <+> y = x <> space <> y

As demonstrated in the above example, we can use Haskell
functions (such as fromDFA), including higher-order ones
(such as opP and is), to build FliPpr programs. This is not
possible in the original FliPpr, except some special cases with
the designated syntax text s as r (see Appendix A.2 for a
comparison).

7 Discussions and Related Work
In this paper, we looked at the embedding of FliPpr. Through
the techniques are presented in the specific context, some of
the results are expected to be of more general interests.
Recall that there are three characteristics of FliPpr lan-

guage: (1) treelessness, (2) first-orderness and (3) explicit
handling of recursions. These characteristics are actually
rather common in invertible languages. For example, Mat-
suda et al. [23] and Nishida et al. [29] also discuss the in-
version of treeless languages. Since treelessness essentially
characterizes transducer-like computation, where the inputs
and outputs are separated, we believe a similar technique
would be applicable to invertible transducers [15, 22].

Not all languages require an elaborate treatment of recur-
sions like the case of FliPpr. For lenses [10] and reversible
functional languages such as RFUN [38], the usual (i.e., Haskell-
level) fixed-point is sufficient. Consequently, there is no need
to have abs and app, as using Haskell-level functions on
the guest-language’s expressions would suffice. However,
there are still other binders (such as let and case expres-
sions) where the unembedding transformation is needed.
Some program inversion methods are realized by whole

program analysis and transformation [12]. That is, they are
transformations from a programming language to another,
which is similar to the original spirit of the unembedding.

There are other embedded systems for defining pairs of
parser and printer. Rendel and Ostermann [34] propose an
embedded invertible syntax description framework based on
arrow combinators [17], in which users define printers and
parsers in the same language. But they do not support con-
trol on pretty-printing (i.e., дroup and nest), nor point-wise
programming. Despite being based on arrow combinators,
invertible syntax description is not proper arrows and thus
not subject to the arrow syntax [32]. Moreover, the frame-
work is hardwired to a certain parsing semantics, whereas
ours generates CFGs open to different parsing algorithms.
Danielsson [7] develops a framework in Agda, in which users
write a grammar and a pretty-printer, where the correctness
of the pretty-printer with respect to the grammar is guar-
anteed by construction with the help of dependent types,
as the pretty-printing combinators convey proofs. Unlike
ours and the invertible syntax framework, users write both a

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

pretty-printer and a grammar, which leads to a maintenance
problem: changes to one may imply non-trivial changes to
the other.
We use the ST monad for representing grammars, while

Baars et al. [3] use de Bruijn index for type-safe representa-
tion of recursive grammars. To use de Bruijn index in our
setting requires elaborating type-level programming to deal
with mutually defined functions. We also note that the idea
of using monads to express laziness and sharing can be found
in Fischer et al. [9], and Matsuda and Asada [21].
Parametric higher-order abstract syntax (PHOAS) [5] is

another technique for reusing host language’s binders. This
representation has the similar problem with the tagless-final
style in embedding invertible languages. Moreover, mark-
like methods that do not return the expression type are not
well expressed in PHOAS.

Polakow [33] proposes an embedding method of the linear
λ calculus to Haskell, which does not require explicit weak-
ening of terms. Although there is no weakening in the linear
λ calculus, he considers a variant of which typing judgment
has the form of Γ1 \ Γ2 ⊢ e : τ , where the difference between
Γ1 and Γ2 represents the original linear type environment,
but allows weakening-like conversion from Γ1 \ Γ2 ⊢ e : τ
to (Γ1, Γ

′) \ (Γ2, Γ
′) ⊢ e : τ . He avoids explicit conversion by

abstracting a type environment through polymorphism; type
instantiation suffices for weakening because de Bruijn levels
are used instead of indices. The technique is also useful for a
non-linear setting as in FliPpr. However, being polymorphic
complicates manipulation of terms. For example, explicit
type signatures are mandatory for recursive definitions [14],
while being optional in unembedding.

Matsuda and Wang [25, 26] provide a way to convert
lenses [10] to functions via Yoneda embedding, which en-
ables us to compose lenses via Haskell’s usual higher-order
functions. Since invertible functions are a special case of
lenses, we could use this approach for pretty-printing primi-
tives. However, the method does not handle lens combina-
tors well and is not sufficient for our purpose. For example,
there will be a restriction that case branches much be closed,
ruling out programs such as fromDFA. The language HO-
BiT is designed [27] to overcome this problem. But just like
FliPpr, HOBiT is standalone, which may also benefit from
the techniques proposed in this paper for an embedded im-
plementation.

8 Conclusion
We have developed an embedded version of FliPpr using the
unembedding transformation [1, 2]. The benefit is enhanced
interoperability with Haskell (as the host language): one
can interconvert FliPpr functions and Haskell functions, and
FliPpr functions can manipulate Haskell’s datatypes. This
newly gained power is useful. We are now able to construct
FliPpr programs using Haskell functions, avoiding rather

complex programs transformations and syntactic restrictions
of the original FliPpr—they can be mimicked by the newAPIs
(mark and local) and Haskell function (defines).

A Appendix
A.1 Implementation of coer
The implementation is a bit different from the untyped case [2]
and the Agda implementation case [19]. The basic structure
of coer is as follows.

coer γ γ ′ x | Just Refl← eqEnv γ γ ′ = x

coer γ (TExt γ ′) = S (coer γ γ ′)

Here, Refl is the constructor of the following datatype that
represents propositional equality.

data a :~: b where Refl :: a :~: a

There are two ways to implement eqEnv. One approach
is to use eqT from Data.Typeable.

eqEnv :: (Typeable Γ, Typeable Γ′) ⇒

TEnv Γ → TEnv Γ′ → Maybe (Γ :~: Γ′)

eqEnv = eqT

This works and is efficient (eqT runs in O(1) time as it per-
forms comparison (only) on hash values), but requires Γ and
Γ′ to be Typeable instances, scattering Typeable constraints
to coer and the TEnv definition and so on.
Thus, for simplicity of presentation, we avoid the above

definition and use the following definition instead.

eqEnv :: TEnv Γ → TEnv Γ′ → Maybe (Γ :~: Γ′)

eqEnv TEmp TEmp = Just Refl
eqEnv (TExt γ) (TExt γ ′) =

case eqEnv γ γ ′ of
Nothing→ Nothing
Just Refl→ Just (unsafeCoerce Refl)

eqEnv = Nothing

Notice that we have Γ = Γ′ if γ and γ ′ have the same size [1],
and the use of unsafeCoerce does not risk type safety. This
version of coer γ γ ′ takes time quadratic to the size of γ .
As discussed in Section 5.5, we use a more efficient imple-
mentation with more aggressive use of unsafeCoerce to make
coer constant time. The actual implementation can be found
in the module Text.FliPpr.Internal.PartialEnv in the
implementation site.

A.2 Code Comparison
The following is a program in the original FliPpr’s surface
language, which corresponds to Section 6.

ppr x = nil <> pprE 0 x <> nil
pprVar x = text x as ([a-z][a-zA-Z0-9]*)-let
pprE k x = manyParens (pprE′ k x)

pprE′ k (Num n) = text (itoa n) as -?[0-9]+
pprE′ k (Var x) = pprVar x

Embedding Invertible Languages with Binders Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

pprE′ k (Sub e1 e2) = ifParens (k > 1) (дroup (

pprE k e1 <>

nest 2 (lineN <> text "-" <> spaceN <> pprE 2 e2)))
pprE′ k (Div e1 e2) = ifParens (k > 2) (дroup (

pprE k e1 <>

nest 2 (lineN <> text "/" <> spaceN <> pprE 3 e2)))
pprE′ k (Let x e1 e2) = parensIf (k > 0) (дroup (

text "let" <> space <> pprVar x <> nil <> text "=" <>

nest 2 (lineN <> pprE 0 e1) <>
line <> text "in" <> space <> pprE 0 e2))

One might find that Sub and Div branches are similar, but
since the original FliPpr is first-order, we cannot extract the
common pattern between the branches. A subtle difference is
that we replaced <+> with its definition as the original FliPpr
does not allow users to define binary operators.
If we just use Wadler’s combinators in Haskell, the code

would be as follows.

ppr :: Exp→ Doc
ppr x = pprE 0 x
pprE :: Prec→ Exp→ Doc
pprE k (Num n) = text (show n)

pprE k (Var x) = text x

pprE k (Sub e1 e2) = opP (Fixity 1 AL) (op "-") pprE k e1 e2
pprE k (Div e1 e2) = opP (Fixity 2 AL) (op "/") pprE k e1 e2
pprE k (Let x e1 e2) = parensIf (k > 0) $ дroup $

text "let" <+> text x <> text "=" <>

nest 2 (line <> pprE 0 e1) <>
line <> text "in" <+> pprE 0 e2

op :: String→ Doc→ Doc
op s d1 d2 = дroup $ d1 <> nest 2 (line <> text s <+> d2)

(<+>) :: Doc→ Doc→ Doc
x <+> y = x <> text " " <> y

opP :: Fixity→ (Doc→ Doc→ Doc) →
(Prec→ a → Doc) → (Prec→ b → Doc) →
Prec→ a → b → Doc

opP = . . . {- the same definition as Section 6 -} . . .

Here, we use Doc for the objects that retain pretty-printing
information in Wadler’s combinators [36]. Notice that we
do not use manyParens, nil, space and spaceN here because
we do not specify parsing behavior in pure pretty-printing.
It is interesting see that the definition of opP is the same as
that in Section 6, which is impossible in the original FliPpr.
On the other hand, both original FliPpr and Haskell versions
use ordinary pattern matching, which has to be simulated by
deconstructing functions such as unSub in embedded FliPpr.

Acknowledgments
The work was partially supported by JSPS KAKENHI Grant
Numbers 15K15966 and 15H02681, and by Royal Society
International Exchanges Grant: Bidirectional Compiler for
Software Evolution, IES\R3\170104.

References
[1] Robert Atkey. 2009. Syntax for Free: Representing Syntax with Binding

Using Parametricity. In TLCA (Lecture Notes in Computer Science),
Pierre-Louis Curien (Ed.), Vol. 5608. Springer, 35–49. https://doi.org/
10.1007/978-3-642-02273-9_5

[2] Robert Atkey, Sam Lindley, and Jeremy Yallop. 2009. Unembedding
domain-specific languages. In Haskell, Stephanie Weirich (Ed.). ACM,
37–48. https://doi.org/10.1145/1596638.1596644

[3] Arthur I. Baars, S. Doaitse Swierstra, and Marcos Viera. 2010. Typed
Transformations of Typed Grammars: The Left Corner Transform.
Electr. Notes Theor. Comput. Sci. 253, 7 (2010), 51–64. https://doi.org/10.
1016/j.entcs.2010.08.031

[4] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https:
//doi.org/10.1017/S0956796809007205

[5] Adam Chlipala. 2008. Parametric higher-order abstract syntax for
mechanized semantics. In ICFP, James Hook and Peter Thiemann
(Eds.). ACM, 143–156. https://doi.org/10.1145/1411204.1411226

[6] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool
for random testing of Haskell programs. In ICFP, Martin Odersky and
Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/351240.
351266

[7] Nils Anders Danielsson. 2013. Correct-by-construction pretty-printing.
In DTP, Stephanie Weirich (Ed.). ACM, 1–12. https://doi.org/10.1145/
2502409.2502410

[8] Jonas Duregård and Patrik Jansson. 2011. Embedded parser generators.
In Haskell, Koen Claessen (Ed.). ACM, 107–117. https://doi.org/10.
1145/2034675.2034689

[9] Sebastian Fischer, Oleg Kiselyov, and Chung-chieh Shan. 2011. Purely
functional lazy nondeterministic programming. J. Funct. Program. 21,
4-5 (2011), 413–465. https://doi.org/10.1017/S0956796811000189

[10] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. 2007. Combinators for bidirec-
tional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29, 3 (2007).

[11] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. 2008. Parser
Combinators for Ambiguous Left-Recursive Grammars. In PADL (Lec-
ture Notes in Computer Science), Paul Hudak and David Scott Warren
(Eds.), Vol. 4902. Springer, 167–181.

[12] Robert Glück andMasahiko Kawabe. 2004. Derivation of Deterministic
Inverse Programs Based on LR Parsing. In FLOPS (Lecture Notes in
Computer Science), Yukiyoshi Kameyama and Peter J. Stuckey (Eds.),
Vol. 2998. Springer, 291–306.

[13] Robert Glück and Masahiko Kawabe. 2005. Revisiting an automatic
program inverter for Lisp. SIGPLAN Notices 40, 5 (2005), 8–17.

[14] Fritz Henglein. 1993. Type Inference with Polymorphic Recursion.
ACM Trans. Program. Lang. Syst. 15, 2 (1993), 253–289. https://doi.org/
10.1145/169701.169692

[15] Qinheping Hu and Loris D’Antoni. 2017. Automatic program inver-
sion using symbolic transducers. In PLDI, Albert Cohen and Martin T.
Vechev (Eds.). ACM, 376–389. https://doi.org/10.1145/3062341.3062345

[16] John Hughes. 1995. The Design of a Pretty-printing Library. In Ad-
vanced Functional Programming (Lecture Notes in Computer Science),
Johan Jeuring and Erik Meijer (Eds.), Vol. 925. Springer, 53–96.

[17] John Hughes. 2000. Generalising monads to arrows. Sci. Comput.
Program. 37, 1-3 (2000), 67–111. https://doi.org/10.1016/S0167-6423(99)
00023-4

[18] Graham Hutton. 1992. Higher-Order Functions for Parsing. J.
Funct. Program. 2, 3 (1992), 323–343. https://doi.org/10.1017/
S0956796800000411

[19] Steven Keuchel and Johan Jeuring. 2012. Generic conversions of ab-
stract syntax representations. In WGP, Andres Löh and Ronald Garcia
(Eds.). ACM, 57–68. https://doi.org/10.1145/2364394.2364403

https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1016/j.entcs.2010.08.031
https://doi.org/10.1016/j.entcs.2010.08.031
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2502409.2502410
https://doi.org/10.1145/2502409.2502410
https://doi.org/10.1145/2034675.2034689
https://doi.org/10.1145/2034675.2034689
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/3062341.3062345
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1145/2364394.2364403

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Kazutaka Matsuda and Meng Wang

[20] Oleg Kiselyov. 2016. Probabilistic Programming Language and its
Incremental Evaluation. In APLAS (Lecture Notes in Computer Science),
Atsushi Igarashi (Ed.), Vol. 10017. 357–376. https://doi.org/10.1007/
978-3-319-47958-3_19

[21] Kazutaka Matsuda and Kazuyuki Asada. 2017. A functional reformu-
lation of UnCAL graph-transformations: or, graph transformation as
graph reduction. In PEPM, Ulrik Pagh Schultz and Jeremy Yallop (Eds.).
ACM, 71–82. https://doi.org/10.1145/3018882

[22] Kazutaka Matsuda, Kazuhiro Inaba, and Keisuke Nakano. 2012.
Polynomial-time inverse computation for accumulative functions with
multiple data traversals. Higher-Order and Symbolic Computation 25, 1
(2012), 3–38. https://doi.org/10.1007/s10990-013-9097-8

[23] Kazutaka Matsuda, Shin-Cheng Mu, Zhenjiang Hu, and Masato Take-
ichi. 2010. A Grammar-Based Approach to Invertible Programs. In
ESOP (Lecture Notes in Computer Science), Andrew D. Gordon (Ed.),
Vol. 6012. Springer, 448–467.

[24] Kazutaka Matsuda and Meng Wang. 2013. FliPpr: A Prettier Invertible
Printing System. In ESOP (Lecture Notes in Computer Science), Matthias
Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer, 101–120.
https://doi.org/10.1007/978-3-642-37036-6_6

[25] Kazutaka Matsuda and Meng Wang. 2015. Applicative bidirectional
programming with lenses. In ICFP, Kathleen Fisher and John H. Reppy
(Eds.). ACM, 62–74. https://doi.org/10.1145/2784731.2784750

[26] Kazutaka Matsuda and Meng Wang. 2018. Applicative bidirec-
tional programming: Mixing lenses and semantic bidirectionaliza-
tion. J. Funct. Program. 28 (2018), e15. https://doi.org/10.1017/
S0956796818000096

[27] Kazutaka Matsuda and Meng Wang. 2018. HOBiT: Programming
Lenses Without Using Lens Combinators. In ESOP (Lecture Notes in
Computer Science), Amal Ahmed (Ed.), Vol. 10801. Springer, 31–59.
https://doi.org/10.1007/978-3-319-89884-1_2

[28] Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. J. Funct. Program. 18, 1 (2008), 1–13. https://doi.org/10.

1017/S0956796807006326
[29] Naoki Nishida, Masahiko Sakai, and Toshiki Sakabe. 2001. Genera-

tion of inverse term rewriting systems for pure treeless functions. In
Proceedings of the International Workshop on Rewriting in Proof and
Computation. 188–198.

[30] Hugo Pacheco and Alcino Cunha. 2010. Generic Point-free Lenses.
In MPC (Lecture Notes in Computer Science), Claude Bolduc, Jules
Desharnais, and Béchir Ktari (Eds.), Vol. 6120. Springer, 331–352.
https://doi.org/10.1007/978-3-642-13321-3_19

[31] Hugo Pacheco, Zhenjiang Hu, and Sebastian Fischer. 2014. Monadic
combinators for "Putback" style bidirectional programming. In PEPM,
Wei-Ngan Chin and Jurriaan Hage (Eds.). ACM, 39–50. https://doi.
org/10.1145/2543728.2543737

[32] Ross Paterson. 2001. A New Notation for Arrows. In ICFP, Benjamin C.
Pierce (Ed.). ACM, 229–240. https://doi.org/10.1145/507635.507664

[33] Jeff Polakow. 2015. Embedding a full linear Lambda calculus in Haskell.
InHaskell, Ben Lippmeier (Ed.). ACM, 177–188. https://doi.org/10.1145/
2804302.2804309

[34] Tillmann Rendel and Klaus Ostermann. 2010. Invertible syntax de-
scriptions: unifying parsing and pretty printing. In Haskell, Jeremy
Gibbons (Ed.). ACM, 1–12.

[35] Philip Wadler. 1990. Deforestation: Transforming Programs to Elimi-
nate Trees. Theor. Comput. Sci. 73, 2 (1990), 231–248.

[36] Philip Wadler. 2003. A Prettier Printer. In The Fun of Programming,
Jeremy Gibbons and Oege de Moor (Eds.). Palgrave Macmillan, Chap-
ter 11.

[37] Tetsuo Yokoyama. 2010. Reversible Computation and Reversible Pro-
gramming Languages. Electr. Notes Theor. Comput. Sci. 253, 6 (2010),
71–81. https://doi.org/10.1016/j.entcs.2010.02.007

[38] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. 2011.
Towards a Reversible Functional Language. In RC (Lecture Notes in
Computer Science), Alexis De Vos and Robert Wille (Eds.), Vol. 7165.
Springer, 14–29. https://doi.org/10.1007/978-3-642-29517-1_2

https://doi.org/10.1007/978-3-319-47958-3_19
https://doi.org/10.1007/978-3-319-47958-3_19
https://doi.org/10.1145/3018882
https://doi.org/10.1007/s10990-013-9097-8
https://doi.org/10.1007/978-3-642-37036-6_6
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1017/S0956796818000096
https://doi.org/10.1017/S0956796818000096
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1007/978-3-642-13321-3_19
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/2804302.2804309
https://doi.org/10.1145/2804302.2804309
https://doi.org/10.1016/j.entcs.2010.02.007
https://doi.org/10.1007/978-3-642-29517-1_2

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 FliPpr: Invertible Pretty-Printing System
	2.2 Unembedding Transformation

	3 Embedding Non-Recursive FliPpr
	3.1 Interoperable FliPpr
	3.2 Embedded Non-Recursive FliPpr
	3.3 Programming with FliPprE

	4 Embedding Recursive Definitions
	4.1 Representation of Grammars
	4.2 Instance of FliPprD for Parsing

	5 Further Improvements
	5.1 Wrapping Raw Type Variables
	5.2 Inter-conversion from/to Haskell Functions
	5.3 Parameterized Recursions
	5.4 Special Treatment of Spacing Combinators
	5.5 Implementation of Type/Variable Environments

	6 A Larger Example
	7 Discussions and Related Work
	8 Conclusion
	A Appendix
	A.1 Implementation of coer
	A.2 Code Comparison

	Acknowledgments
	References

