
ZU064-05-FPR main 22 February 2018 18:16

Under consideration for publication in J. Functional Programming 1

Applicative Bidirectional Programming
Mixing Lenses and Semantic Bidirectionalization

KAZUTAKA MATSUDA
Graduate School of Information Sciences, Tohoku University

and
MENG WANG

Department of Computer Science, University of Bristol

Abstract

A bidirectional transformation is a pair of mappings between source and view data objects, one in
each direction. When the view is modified, the source is updated accordingly with respect to some
laws. One way to reduce the development and maintenance effort of bidirectional transformations is to
have specialized languages in which the resulting programs are bidirectional by construction—giving
rise to the paradigm of bidirectional programming.

In this paper, we develop a framework for applicative-style and higher-order bidirectional pro-
gramming, in which we can write bidirectional transformations as unidirectional programs in standard
functional languages, opening up access to the bundle of language features previously only available
to conventional unidirectional languages. Our framework essentially bridges two very different
approaches of bidirectional programming, namely the lens framework and Voigtländer’s semantic
bidirectionalization, creating a new programming style that is able to obtain benefits from both.

1 Introduction

Bidirectionality is a reoccurring aspect of computing: transforming data from one format to
another, and requiring a transformation in the opposite direction that is in some sense an
inverse. The most well-known instance is the view-update problem (Bancilhon & Spyratos
1981; Dayal & Bernstein 1982; Fegaras 2010; Hegner 1990) from database design: a “view”
represents a database computed from a source by a query, and the problem comes when
translating an update of the view back to a “corresponding” update on the source.

But the problem is much more widely applicable than just to databases. It is central in the
same way to most interactive programs, such as desktop and web applications: underlying
data, perhaps represented in XML, is presented to the user in a more accessible format,
edited in that format, and the edits translated back in terms of the underlying data (Hayashi
et al. 2007; Hu et al. 2004; Rajkumar et al. 2013). Similarly for model transformations,
playing a substantial role in software evolution: having transformed a high-level model into
a lower-level implementation, for a variety of reasons one often needs to reverse engineer
a revised high-level model from an updated implementation (Xiong et al. 2007; Yu et al.
2012).

ZU064-05-FPR main 22 February 2018 18:16

2 Kazutaka Matsuda and Meng Wang

Using terminologies originated from the lens framework (Bohannon et al. 2008; Foster
et al. 2007, 2008), bidirectional transformations, coined lenses, can be represented as pairs
of functions known as get of type S→ V and put of type S→ V→ S. Function get extracts
a view from a source, and put takes both an updated view and the original source as inputs
to produce an updated source. An example definition of a bidirectional transformation in
Haskell notation is

data Lens s v = Lens {get :: s→ v,put :: s→ v→ s}
fstL :: Lens (a,b) a
fstL = Lens (λ (a,)→ a) (λ (,b) a→ (a,b))

A value ` of type Lens s v is a lens that has two function fields namely get and put, and the
record syntax overloads the field names as access functions: get ` has type s→ v and put `
has type s→ v→ s. The datatype is used in the definition of fstL where the first element of
a source pair is projected as the view, and may be updated to a new value.

Not all bidirectional transformations are considered “reasonable” ones. The following
laws are generally required to establish bidirectionality:

put ` s (get ` s) = s (Acceptability)

get ` s′ = v if put ` s v = s′ (Consistency)

for all s, s′ and v. Note that in this paper, we write e = e′ with the assumption that neither e
nor e′ is undefined. Here Consistency (also known as the PutGet law (Foster et al. 2007))
roughly corresponds to right-invertibility, ensuring that all updates on a view are captured by
the updated source; and Acceptability (also known as the GetPut law (Foster et al. 2007)),
prohibits changes to the source if no update has been made on the view. Collectively, the
two laws define well-behavedness (Bancilhon & Spyratos 1981; Foster et al. 2007; Hegner
1990). A bidirectional transformation Lens get put is called well-behaved if it satisfies
well-behavedness. The above example fstL is a well-behaved bidirectional transformation.

By dint of hard effort, one can construct separately the forward transformation get and
the corresponding backward transformation put. However, this is a significant duplication
of work, because the two transformations are closely related. Moreover, it is prone to error,
because they do really have to correspond with each other to be well-behaved. And, even
worse, it introduces a maintenance issue, because changes to one transformation entail
matching changes to the other. Therefore, a lot of work has gone into ways to reduce this
duplication and the problems it causes; in particular, there has been a recent rise in linguistic
approaches to streamlining bidirectional transformations (Barbosa et al. 2010; Bohannon
et al. 2008; Foster et al. 2007, 2008, 2010; Hidaka et al. 2010; Hu et al. 2004; Matsuda &
Wang 2013, 2014; Matsuda et al. 2007; Mu et al. 2004; Pacheco et al. 2014b; Rajkumar
et al. 2013; Voigtländer 2009a; Voigtländer et al. 2010, 2013; Wang & Najd 2014; Wang
et al. 2010, 2011, 2013).

Ideally, bidirectional programming should be as easy as usual unidirectional programming.
For this to be possible, techniques of conventional languages such as applicative-style and
higher-order programming need to be available in the bidirectional languages, so that
existing programming idioms and abstraction methods can be ported over. At the minimum,
programmers shall be allowed to treat functions as first-class objects and have them applied

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 3

explicitly. Moreover, it is beneficial to be able to write bidirectional programs in the
same style of their gets, because as cultivated by traditional unidirectional programming,
programmers normally start with (at least mentally) constructing a get before trying to make
it bidirectional.

However, existing bidirectional programming frameworks fall short of this goal by quite
a distance. The lens bidirectional programming framework (Barbosa et al. 2010; Bohannon
et al. 2008; Foster et al. 2007, 2008, 2010; Hu et al. 2004; Mu et al. 2004; Pacheco et al.
2014b; Rajkumar et al. 2013; Wang et al. 2010, 2013), the most influential of all, composes
small lenses into larger ones by special lens combinators. The combinators preserve well-
behavedness, and thus produce bidirectional programs that are correct by construction.
Lenses are impressive in many ways: they are highly expressive and adaptable, and in many
implementations a carefully crafted type system guarantees the totality of the bidirectional
transformation. But at the same time, like many other combinator-based languages, lenses
restrict programming to the point-free style, which may not be the most appropriate in all
cases. We have learned from past experiences (McBride & Paterson 2008; Paterson 2001)
that a more convenient programming style does profoundly impact on the popularity of a
language.

Research on bidirectionalization (Hidaka et al. 2010; Matsuda & Wang 2013, 2014;
Matsuda et al. 2007; Voigtländer 2009a; Voigtländer et al. 2010, 2013; Wang & Najd 2014;
Wang et al. 2010, 2013), which mechanically derives a suitable put from an existing get,
shares the same spirit with us to some extent. The gets can be programmed in a unidirectional
language and passed in as objects to the bidirectionalization engine, which performs program
analysis and then generation of puts. However, the existing bidirectionalization methods
are whole program analyses; there is no better way to compose individually constructed
bidirectional transformations.

In this paper, we develop a novel bidirectional programming framework:

• As lenses, it supports composition of user-constructed bidirectional transformations,
and well-behavedness of the resulting bidirectional transformations is guaranteed by
construction.

• As a bidirectionalization system, it allows users to write bidirectional transformations
almost in the same way as that of gets, in an applicative and higher-order programming
style.

The key idea of our proposal is to lift lenses of type Lens (A1, . . . ,An) B to lens functions of
type

∀s.L s A1→ ··· → L s An→ . . . → L s B

where L is a type-constrained version of Lens (Sections 2 and 3). The n-ary tuple (A1, . . . ,An)

above is then generalized to data structures such as lists in Section 4. This function
representation of lenses is open to manipulation in an applicative style, and can be passed to
higher-order functions directly. For example, we can write a bidirectional version of unlines,
defined by

unlines :: [String]→ String
unlines [] = ""
unlines (x : xs) = x++"\n"++unlines xs

ZU064-05-FPR main 22 February 2018 18:16

4 Kazutaka Matsuda and Meng Wang

as below.

unlinesF :: [L s String]→ L s String
unlinesF [] = new ""
unlinesF (x : xs) = lift2 catLineL (x,unlinesF xs)

where catLineL is a lens version of λx y→ x++"\n"++ y. In the above, except for the
noise of new and lift2, the definition is faithful to the original structure of unlines’ definition,
in an applicative style. With the heavy-lifting done in defining the lens function unlinesF, a
corresponding lens unlinesL :: Lens [String] String is readily available through straightfor-
ward unlifting: unlinesL = unliftT unlinesF. In the forward direction, lens unlinesL is the
same as the unidirectional function unlines:

Main> get unlinesL ["a","b","c"]
"a\nb\nc\n"

In the backward direction, changes to the list elements in the view are put back to the source:

Main> put unlinesL ["a","b","c"] "AA\nBB\nCC\n"
["AA","BB","CC"]

With this definition, structural updates (i.e., changes to the length of the view list) are not al-
lowed. For example, put unlinesL ["a","b","c"] "AA\nBB\n" and put unlinesL ["a","b","c"]
"AA\nBB\nCC\nDD\n" result in exceptions. In Section 6, we explain that this restriction
on updates is statically reflected in the type of unlinesF, and may be relaxed at the cost of
the simplicity of the definition.

In Section 5, we demonstrate the expressiveness of our core system through a realistic
example (bidirectional evaluator for a higher-order programming language), and then extend
the core system in two different dimensions, showing a smooth integration of our framework
with both lenses and bidirectionalization approaches in Section 6. We deploy the extended
system in the context of XML transformations (Section 7), before proving the correctness
theorem (Section 8). We discuss related techniques in Section 9, in particular making
connection to semantic bidirectionalization (Matsuda & Wang 2013, 2014; Voigtländer
2009a; Wang & Najd 2014), followed by conclusion in Section 10. An implementation of
our idea is available from https://hackage.haskell.org/package/app-lens.

Notes on Proofs and Examples. To simplify the formal discussion, we assume that all
functions except puts are total and no data structure contains ⊥. To deal with the partiality
of puts, we assume that a put function of type A→ B→ A can be represented as a total
function of type A→ B→Maybe A, which upon termination will produce either a value
Just a or an error Nothing.

We strive to balance the practicality and clarity of examples. Very often we deliberately
choose small but hopefully still illuminating examples aiming at directly demonstrating
the and only the theoretical issue being addressed. In addition, we include in Section 5
a sizeable application and would like to refer interested readers to https://bitbucket.
org/kztk/app-lens for examples ranging from some general list functions in Prelude to
the specific problem of XML transformations.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 5

A preliminary version of this paper appeared in ICFP’15 (Matsuda & Wang 2015), under
the title “Applicative Bidirectional Programming with Lenses”. The major differences to the
preliminary version include proofs in Section 8 and Appendix A, more detailed discussion
to Voigtländer’s original bidirectionalization in Section 6.2, and an XML transformation
example in Section 7 involving the extensions discussed in Section 6, together with the
improvement of overall presentation and correction of technical errors in Section 3.

2 Bidirectional Transformations as Functions

Conventionally, bidirectional transformations are represented directly as pairs of func-
tions (Foster et al. 2007; Hegner 1990; Hidaka et al. 2010; Hu et al. 2004; Matsuda & Wang
2013, 2014; Matsuda et al. 2007; Mu et al. 2004; Voigtländer 2009a; Voigtländer et al. 2010,
2013; Wang & Najd 2014; Wang et al. 2010, 2011, 2013) (see the datatype Lens defined in
Section 1). In this paper, we use lenses to refer specifically to bidirectional transformations
in this representation.

Lenses can be constructed and reasoned about compositionally. For example, with the
composition operator “◦̂”

(◦̂) :: Lens b c→ Lens a b→ Lens a c
(Lens get2 put2) ◦̂ (Lens get1 put1) =

Lens (get2 ◦get1) (λ s v→ put1 s (put2 (get1 s) v))

we can compose fstL to itself to obtain a lens that operates on nested pairs, as below.

fstTriL :: Lens ((a,b),c) a
fstTriL = fstL ◦̂ fstL

Well-behavedness is preserved by such compositions: fstTriL is well-behaved by construction
assuming well-behaved fstL.

The composition operator “◦̂” is associative, and has the identity lens idL as its unit.

idL :: Lens a a
idL = Lens id (λ v→ v)

This means that the set of (both well-behaved and not-necessarily-well-behaved) lenses
forms a category, where objects are types (sets in our setting), and morphisms from A to B
are lenses of type Lens A B.

2.1 Basic Idea: A Functional Representation Inspired by Yoneda

Our goal is to develop a representation of bidirectional transformations such that we
can apply them, pass them to higher-order functions and reason about well-behavedness
compositionally.

Inspired by the Yoneda embedding in category theory (Mac Lane 1998), we lift lenses of
type Lens a b to polymorphic functions of type

∀s.Lens s a→ Lens s b

by lens composition

ZU064-05-FPR main 22 February 2018 18:16

6 Kazutaka Matsuda and Meng Wang

lift :: Lens a b→ (∀s.Lens s a→ Lens s b)
lift `= λx→ ` ◦̂ x

Intuitively, a lens of type Lens s A with the universally quantified type variable s in a lifted
function can be seen as an updatable datum of type A, and a lens of type Lens A B as a
transformation of type ∀s.Lens s A→ Lens s B on updatable data. We call such lifted lenses
lens functions.

The lifting function lift is injective, and has the following left inverse.

unlift :: (∀s.Lens s a→ Lens s b)→ Lens a b
unlift f = f idL

Since lens functions are normal functions, they can be composed and passed to higher-
order functions in the usual way. For example, fstTriL can now be defined with the usual
function composition.

fstTriL :: Lens ((a,b),c) a
fstTriL = unlift (lift fstL ◦ lift fstL)

Alternatively in a more applicative style, we can use a higher-order function twice :: (a→
a)→ a→ a as below.

fstTriL = unlift (λx→ twice (lift fstL) x)
where twice f x = f (f x)

Like many category-theory inspired isomorphisms, this functional representation of
bidirectional transformations is not unknown (Ellis 2012); but its formal properties and
applications in practical programming have not been investigated before.

2.2 Formal Properties of Lens Functions

We reconfirm that lift is injective with unlift as its left inverse.

Proposition 1. unlift (lift `) = ` for all lenses ` :: Lens A B.

We say that a function f preserves well-behavedness, if f ` is well-behaved for any well-
behaved lens `. Functions lift and unlift have the following desirable properties.

Proposition 2. lift ` preserves well-behavedness if ` is well-behaved.

Proof
Immediate from the fact that ◦̂ preserves well-behavedness (Foster et al. 2007).

Proposition 3. unlift f is well-behaved if f preserves well-behavedness.

As it stands, the type Lens is open and it is possible to define lens functions through
pattern-matching on the constructor. This becomes a problem when we want to guarantee
that f ::∀s.Lens s A→ Lens s B preserves well-behavedness. For example, the following f
does not preserve well-behavedness.

f :: Lens s Int→ Lens s Int
f (Lens g p) = Lens g (λ s → p s 3)

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 7

Here the input lens is pattern matched and the get/put components are used directly in
constructing the output lens, which breaks encapsulation and blocks compositional reasoning
of behaviors. Moreover, it is worth mentioning that lift is not surjective due to the exposure
of Lens. The following f ′ is an example that lift cannot produce, i.e., lift (unlift f ′) 6≡ f ′.

f ′ :: Eq a⇒ Lens s (Maybe a)→ Lens s (Maybe a)
f ′ (Lens g p) = Lens g (λ s v→ if v g s then s else p (p s Nothing) v)

For example, for a well-behaved lens

` :: Lens (Maybe (Int, Int)) (Maybe Int)
`= Lens g p

where g Nothing = Nothing
g (Just s) = Just (fst s)
p Nothing Nothing = Nothing
p (Just s) (Just v) = Just (v,snd s)

we have put (f ′ `) (Just (1,2)) (Just 3)=⊥while put (lift (unlift f ′) `) (Just (1,2)) (Just 3)=
Just (3,2).

In our framework the intention is that all lens functions are constructed through lifting,
which sees bidirectional transformations as atomic objects. Thus, we require that Lens is
used as an “abstract type” in defining lens functions of type ∀s.Lens s A→ Lens s B. That
is, we require that lens values must be produced and consumed only by using lifted lens
functions. This requirement is formally written as follows.

Definition 1 (Abstract Nature of Lens). We say Lens is abstract in f :: τ if there is a
polymorphic function h of type

∀`.(∀a b.Lens a b→ (∀s. ` s a→ ` s b))
→ (∀a b.(∀s. ` s a→ ` s b)→ Lens a b)→ τ ′

where τ ′ = τ[`/Lens] and f = h lift unlift.

Essentially, the polymorphic ` in h’s type prevents us from using the constructor Lens
directly, while the first functional argument of h (which is lift) provides the (only) means
to produce and consume Lens values. For example, for a function lift fstL :: Lens s (a,b)→
Lens s a, we have a function h lift′ = lift′ fstL ::∀`.(∀a b.Lens a b→ (∀s. ` s a→ ` s b))→
(∀a b.(∀s. ` s a→ ` s b))→ ` s (a,b)→ ` s a such that lift fstL = h lift unlift, and thus Lens
is abstract in lift fstL.

Now the compositional reasoning of well-behavedness extends to lens functions; we can
use a logical relation (Reynolds 1983) to characterize well-behavedness for higher-order
functions. As an instance, we can state that functions of type ∀s.Lens s A→ Lens s B are
well-behavedness preserving as follows.

Theorem 1. Let f ::∀s.Lens s A→ Lens s B be a function in which Lens is abstract. Suppose
that only well-behaved lenses are passed to lift during evaluation. Then, f preserves well-
behavedness, and thus unlift f is well-behaved.

The functions lift fstL ◦ lift fstL and twice (lift fstL) are examples of f in this theorem. Notice
that we can use unlift in the definition of f ; lift (unlift (lift fstL)) is also a function in

ZU064-05-FPR main 22 February 2018 18:16

8 Kazutaka Matsuda and Meng Wang

which Lens is abstract and has a type ∀s.Lens s (A,B)→ Lens s A. We shall omit the proof
of Theorem 1 because it can be proved similarly to Theorem 4 and 6. The condition on
lift in Theorem 1, which is also assumed in Theorems 4 and 6, essentially asserts that
(the denotation of) lift only takes well-behaved lenses, which will be used in the proof of
Theorem 6 in Section 8.

Another consequence of having abstract Lens is that lift is now surjective (and unlift is
now injective).

Lemma 1. Let f be a function of type ∀s.Lens s A→ Lens s B in which Lens is abstract.
Then f `= f idL ◦̂ ` holds for all ` :: Lens S A.

Although this lemma is key to prove the bijectivity of lift/unlift and ensures the naturality
of f , which is mentioned in Yoneda lemma (Section 2.4), our system does not rely on the
surjectivity of lifting functions for correctness: injectivity alone is sufficient. As a matter
of fact, the bijectivity property does not hold when we extend lifting to n-ary lenses in
Section 3. Therefore, we delay the largish proof of this lemma to Appendix A, so as not to
disrupt the flow of the paper.

Theorem 2. For any f ::∀s.Lens s A→ Lens s B in which Lens is abstract, lift (unlift f) = f
holds.

In the rest of this paper, we always assume abstract Lens unless specially mentioned
otherwise.

2.3 Guaranteeing Abstraction

Theorem 1 requires the condition that Lens is abstract in f , which can be enforced by using
abstract types through module systems. For example, in Haskell, we can define the following
module to abstract Lens.

module AbstractLens (Lensabs, liftabs,unliftabs) where
newtype Lensabs a b = Lensabs {unLensabs :: Lens a b}
liftabs :: Lens a b→ (∀s.Lensabs s a→ Lensabs s b)
liftabs `= λx→ Lensabs (lift ` (unLensabs x))

unliftabs :: (∀s.Lensabs s a→ Lensabs s b)→ Lens a b
unliftabs f = unlift (unLensabs ◦ f ◦Lensabs)

Outside the module AbstractLens, we can use liftabs, unliftabs and type Lensabs itself, but
not the constructor of Lensabs. Thus the only way to access data of type Lens is through
liftabs and unliftabs.

2.4 Categorical Notes

As mentioned earlier, our idea of mapping Lens A B to ∀s.Lens s A→ Lens s B is based on
the Yoneda lemma in category theory (Mac Lane 1998, Section III.2). Since our purpose of
this paper is not categorical formalization, we briefly introduce an analogue of the Yoneda
lemma that is enough for our discussion.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 9

Theorem 3 (An Analogue of the Yoneda Lemma (Mac Lane 1998, Section III.2)). The
pair of functions (lift,unlift) is a bijection between

• {` :: Lens A B}, and
• {f ::∀s.Lens s A→ Lens s B | f x ◦̂ y = f (x ◦̂ y)}.

The condition f x ◦̂ y = f (x ◦̂ y) is required to make f a natural transformation between
functors Lens (−) A and Lens (−) B; here, the contravariant functor Lens (−) A maps a lens
` of type Lens Y X to a function (λy→ y ◦̂`) of type Lens X A→ Lens Y A. Note that f x ◦̂y=
f (x ◦̂ y) is equivalent to f x = f idL ◦̂ x. Thus the naturality condition implies Theorem 2
(through Lemma 1), and vice versa. That is, Theorem 3 is nothing but Proposition 1 and
Theorem 2 put together.

It sounds contradictory, but there are no higher-order lenses in a categorical sense. Recall
that the set of (not-necessarily-well-behaved) lenses forms a category. This category of
lenses is monoidal (Hofmann et al. 2011), but is believed to be not closed (Rajkumar
et al. 2013) and have no higher-order lenses. Our discussion does not conflict with this
fact. What we state is that, for any s, (Lens s A,Lens s B)→ Lens s C is isomorphic to
Lens s A→ (Lens s B→ Lens s C), where s is quantified globally; the standard curry and
uncurry are the required bijections.

Also note that Lens s (−) is a functor that maps a lens ` to a function lift `. It is not difficult
to check that lift x◦ lift y = lift (x ◦̂ y) and lift (idL :: Lens A A) = (id :: Lens s A→ Lens s A).

3 Lifting n-ary Lenses and Flexible Duplication

So far we have presented a system that lifts lenses to functions, manipulates the functions,
and then “unlifts” the results to construct composite lenses. One example is fstTriL from
Section 2 reproduced below.

fstTriL :: Lens ((a,b),c) a
fstTriL = unlift (lift fstL ◦ lift fstL)

Astute readers may have already noticed the type Lens ((a,b),c) a which is subtly distinct
from Lens (a,b,c) a. One reason for this is with the definition of fstTriL, which consists of
the composition of lifted fstLs. But more fundamentally it is the type of lift (Lens x y→
(∀s.Lens s x → Lens s y)), which treats x as a black box, that has prevented us from
rearranging the tuple components.

Let’s illustrate the issue with an even simpler example that goes directly to the heart of
the problem.

swapL :: Lens (a,b) (b,a)
swapL = . . .

Following the programming pattern developed so far, we would like to construct this lens
with the familiar unidirectional function swap :: (a,b)→ (b,a). But since lift only produces
unary functions of type ∀s.Lens s A→ Lens s B, despite the fact that A and B are actually pair
types here, there is no way to compose swap with the resulting lens function. If we use the
intuition developed in Section 2.1 that a lens of type Lens s A represents an updatable datum

ZU064-05-FPR main 22 February 2018 18:16

10 Kazutaka Matsuda and Meng Wang

of type A, lift treats a pair (indeed any data structure) as a single datum. What we really
want here is a pair of functions lift2 :: Lens (a,b) c→ (∀s.(Lens s a,Lens s b)→ Lens s c)
and unlift2 :: (∀s.(Lens s a,Lens s b)→ Lens s c)→ Lens (a,b) c, which are able to go into
the pair structure and create separate updatable data that can be manipulated by functions
like swap as:

swapL :: Lens (a,b) (b,a)
swapL = unlift2 (lift2 idL ◦ swap)

In this section, we will see how such a lift2/unlift2 pair is defined (with slightly different
types for the reason that will be discussed in Section 3.1), and show how the idea of having
lift2/unlift2 is related to Applicative in Haskell (McBride & Paterson 2008; Paterson 2012).

3.1 Caveats of the Duplication Lens

The key of binary lifting is the ability to split a pair and have separate lenses applied to each
component. This is achieved via function (~), pronounced “split”.

(~) :: Eq s⇒ Lens s a→ Lens s b→ Lens s (a,b)
x~ y = (x ⊗̂ y) ◦̂dupL

where (⊗̂) is a lens combinator that combines two lenses applying to each component of a
pair (Foster et al. 2007):

(⊗̂) :: Lens a a′→ Lens b b′→ Lens (a,b) (a′,b′)
(Lens get1 put1) ⊗̂ (Lens get2 put2) =

Lens (λ (a,b)→ (get1 a,get2 b))
(λ (a,b) (a′,b′)→ (put1 a a′,put2 b b′))

With (~) we can define the lifting of binary lenses as below.

lift2 :: Lens (a,b) c→ (∀s.(Lens s a,Lens s b)→ Lens s c)
lift2 ` (x,y) = lift ` (x~ y)

The class constraint Eq s in the type of (~) comes from the use of duplication lens dupL
(also known as copy elsewhere (Foster et al. 2007)) defined as below. For simplicity, we
assume that () represents observational equivalence.

dupL :: Eq s⇒ Lens s (s,s)
dupL = Lens (λ s→ (s,s)) (λ (s, t)→ checkEq s t)

where checkEq s t | s t = s -- This will cause a problem later.

Despite being fitting type-wise, this definition of dupL causes a serious execution issue. We
would like to use the following definition as lift2’s left inverse.

unlift2 :: (∀s.(Lens s a,Lens s b)→ Lens s c)→ Lens (a,b) c
unlift2 f = f (fstL,sndL)

But unlift2 ◦ lift2 does not result in identity:

(unlift2 ◦ lift2) `

= { definition unfolding & β -reduction }

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 11

` ◦̂ (fstL ~ sndL)

= { unfolding (~) }
` ◦̂ (fstL ⊗̂ sndL) ◦̂dupL

= { definition unfolding }
` ◦̂blockL where

blockL = Lens id (λ s v→ if s v then v else⊥)

Lens blockL is not a useful lens because it blocks any update to the view. Consequently
any lenses composed with it become useless too. The reason for the failure is that dupL
demands the duplicated copies to remain equal amid updates, which will not hold because
the purpose of the duplication is to create separate updatable data.

3.2 Flexible and Safe Duplication by Tagging

If we look at the lens dupL in isolation, there seems to be no way out. The two duplicated
values have to remain equal for the bidirectional laws to hold. However, if we consider the
context in which dupL is applied, there is more room for maneuver. Let us consider the
lifting function lift2 again, and how put dupL, which rejects the update above, works in the
execution of put (unlift2 (lift2 idL)).

put (unlift2 (lift2 idL)) (1,2) (3,4)
= { simplification }

put ((fstL ⊗̂ sndL) ◦̂dupL) (1,2) (3,4)
= { definition unfolding & β -reduction }

put dupL (1,2) (put fstL (1,2) 3,put sndL (1,2) 4)
= { β -reduction }

put dupL (1,2) ((3,2),(1,4))

The last call to put dupL above will fail because (3,2) 6≡ (1,4). But if we look more carefully,
there is no reason for this behavior: lift2 idL should be able to update the two elements of the
pair independently. Indeed in the put execution above, relevant values to the view change as
highlighted by underlining are only compared for equality with irrelevant values. That is to
say, we should be able to relax the equality check in dupL and update the old source (1,2)
to (3,4) without violating bidirectional laws.

To achieve this, we tag the values according to their relevance to view updates (Mu et al.
2004).

data Tag a = U {unTag :: a} | O {unTag :: a}

Tag U (representing Updated) means the tagged value may be relevant to the view update
and O (representing Original) means the tagged value must not be relevant to the view
update. The idea is that O-tagged values can be altered without violating the bidirectional
laws, as the new dupL below.

dupL :: Poset s⇒ Lens s (s,s)
dupL = Lens (λ s→ (s,s)) (λ (s, t)→ sg t)

Here, Poset is a type class for partially-ordered sets that has a method (g) (pronounced as
“lub”) to compute least upper bounds.

ZU064-05-FPR main 22 February 2018 18:16

12 Kazutaka Matsuda and Meng Wang

class Poset s where (g) :: s→ s→ s

We require that (g) must be associative, commutative and idempotent; but unlike a
semilattice, (g) can be partial. Tagged elements and their (nested) pairs are ordered as
follows.

instance Eq a⇒ Poset (Tag a) where
(O)g (U t) = U t
(U s)g (O) = U s
(O s)g (O t) | s t = O s -- The check s t never fails.
(U s)g (U t) | s t = U s -- In contrast, this check can fail.

instance (Poset a,Poset b)⇒ Poset (a,b) where
(a,b)g (a′,b′) = (aga′,bgb′)

We also introduce the following type synonym for brevity.1

type L s a = Poset s⇒ Lens s a

As we will show later, the move from Lens to L will have implications on well-behavedness.
Accordingly, we change the types of (~), lift and lift2 as below (notice that due to the

change of dupL the behavior of lift2 is changed accordingly)

(~) :: L s a→ L s b→ L s (a,b)
lift :: Lens a b→ (∀s.L s a→ L s b)
lift2 :: Lens (a,b) c→ (∀s.(L s a,L s b)→ L s c)

and adapt the definitions of unlift and unlift2 to properly handle the newly introduced tags.

unlift :: Eq a⇒ (∀s.L s a→ L s b)→ Lens a b
unlift f = f id′L ◦̂ tagL

id′L :: L (Tag a) a
id′L = Lens unTag (const U)

tagL :: Lens a (Tag a)
tagL = Lens O (const unTag)

unlift2 :: (Eq a,Eq b)⇒ (∀s.(L s a,L s b)→ L s c)→ Lens (a,b) c
unlift2 f = f (fst′L,snd′L) ◦̂ tag2L

fst′L :: L (Tag a,Tag b) a
fst′L = Lens (λ (a,)→ unTag a) (λ (,b) a→ (U a,b))
snd′L :: L (Tag a,Tag b) b
snd′L = Lens (λ (,b)→ unTag b) (λ (a,) b→ (a,U b))

tag2L :: Lens (a,b) (Tag a,Tag b)
tag2L = tagL ⊗̂ tagL

We need to change unlift, though no duplication is needed in the unary case, because
the function may be applied to functions calling lift2 internally. The definitions are a bit

1 Actually, we will have to use newtype for the code in this paper to pass GHC 7.8.3’s type checking.
We take a small deviation from GHC Haskell here in favor of brevity.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 13

involved; but a key property is that tags are automatically introduced and eliminated by
unlifts, an internal mechanism that is completely invisible to programmers.

We can now show that the new unlift2 is the left-inverse of lift2 (a similar property holds
for lift/unlift); notice that, as we will discuss later, lift2 is not a left-inverse of unlift2 in
contrast.

Proposition 4. unlift2 (lift2 `) = ` holds for all lenses ` :: Lens (A,B) C.

Proof
We prove the statement with the following calculation.

unlift2 (lift2 `)

= { definition unfolding & β -reduction }
` ◦̂ (fst′L ~ snd′L) ◦̂ tag2L

= { unfolding (~) }
` ◦̂ (fst′L ⊗̂ snd′L) ◦̂dupL ◦̂ tag2L

= { (fst′L ⊗̂ snd′L) ◦̂dupL ◦̂ tag2L = idL — (1) }
`

We prove the statement labeled (1) by showing get ((fst′L ⊗̂ snd′L) ◦̂dupL ◦̂ tag2L) (a,b) =
(a,b) and put ((fst′L ⊗̂ snd′L) ◦̂dupL ◦̂ tag2L) (a,b) (a

′,b′) = (a′,b′). Since the former prop-
erty is easy to prove, we only show the latter here.

put ((fst′L ⊗̂ snd′L) ◦̂dupL ◦̂ tag2L) (a,b) (a
′,b′)

= { definition unfolding & β -reduction }
put tag2L (a,b)$put ((fst′L ⊗̂ snd′L) ◦̂dupL) (O a,O b) (a′,b′)

= { definition unfolding & β -reduction }
put tag2L (a,b)$put dupL (O a,O b)$ (put fst′L (O a,O b) a′,put snd′L (O a,O b) b′)

= { definitions of fst′L and snd′L }
put tag2L (a,b)$put dupL (O a,O b) ((U a′,O b),(O a,U b′))

= { definition of dupL }
put tag2L (a,b) (U a′,U b′)

= { definition of tag2L }
(put tagL a (U a′),put tagL b (U b′))

= { definition of tagL }
(a′,b′)

Thus, we have proved that lift2 is injective.

We can recreate fstL and sndL with unlift2, which is rather reassuring.

Proposition 5. fstL = unlift2 fst and sndL = unlift2 snd.

Example 1 (swap). Lens swapL as seen in the beginning of this section can be defined as
follows

swapL :: (Eq a,Eq b)⇒ Lens (a,b) (b,a)
swapL = unlift2 (lift2 idL ◦ swap)

and it behaves as expected.

ZU064-05-FPR main 22 February 2018 18:16

14 Kazutaka Matsuda and Meng Wang

put swapL (1,2) (4,3)
= { unfold definitions }

put ((snd′L ⊗̂ fst′L) ◦̂dupL ◦̂ tag2L) (1,2) (4,3)
= { simplifications }

put tag2L (1,2)$put dupL (O 1,O 2)$ (put snd′L (O 1,O 2) 4,put fst′L (O 1,O 2) 3)
= { definition of fst′L and snd′L }

put tag2L (1,2)$put dupL (O 1,O 2) ((O 1,U 4),(U 3,O 2))
= { definitions of dupL and tag2L }
(3,4)

It is worth mentioning that (~) is the base for “splitting” and “lifting” tuples of arbitrary
arity. For example, the triple case is as follows.

split3 :: (L s a,L s b,L s c)→ L s (a,b,c)
split3 (x,y,z) = lift flattenLL ((x~ y)~ z)

where flattenLL :: Lens ((a,b),c) (a,b,c)
flattenLL = Lens (λ ((x,y),z)→ (x,y,z))

(λ (x,y,z)→ ((x,y),z))

lift3 ` t = lift ` (split3 t)

For unlifts, we additionally need n-ary versions of projection and tagging functions. But
they are straightforward to define.

In the above definition of split3, we have decided to nest to the left in the intermediate
step. This choice is not essential.

split′3 (x,y,z) = lift flattenRL (x~ (y~ z))
where flattenRL :: Lens (a,(b,c)) (a,b,c)

flattenRL = Lens (λ (x,(y,z))→ (x,y,z))
(λ (x,y,z)→ (x,(y,z)))

The two definitions split3 and split′3 coincide. That is, (~) is associative up to isomorphism.
To complete the picture, the nullary lens function

unit ::∀s.L s ()
unit= Lens (λ → ()) (λ s ()→ s)

is the unit for (~). Theoretically (L s (−),~,unit) forms a lax monoidal functor (Mac Lane
1998, Section XI.2) under certain conditions (see Section 3.4). Practically, unit enables us
to define the following combinator.

new :: Eq a⇒ a→∀s.L s a
new a = lift (Lens (const a) (λ a′→ check a a′)) unit

where
check a a′ = if a a′ then ()

else error "Update on constant"

Function new lifts ordinary values into the bidirectional transformation system; but since
the values are not from any source, they are not updatable. Nevertheless, this ability to lift

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 15

constant values is very useful in practice (Matsuda & Wang 2013, 2014), as we will see in
the examples to come.

Note that now unlifts are no longer injective (even with abstract Lens); there exist
functions that are not equivalent but coincide after unlifting. An example of such is the
pair lift2 fstL and fst: while unlifting both functions results in fstL, they actually differ as
put (lift2 fstL (fst′L,snd′L)) (O a,O b) c = (U c,U b) and put (fst (fst′L,snd′L)) (O a,O b) c =
(U c,O b). Intuitively, fst knows that the second argument is unused, while lift2 fstL does
not because fstL is treated as a black box by lift2. In other words, the relationship between
the lifting/unlifting functions and the Yoneda Lemma discussed in Section 2 ceases to exist
in this new context. Nevertheless, the counter-example scenario described here is contrived
and will not affect practical programming in our framework.

Another side effect of this new development with tags is that the original bidirectional
laws, i.e., the well-behavedness, are temporarily broken during the execution of lift2 and
unlift2 by the new internal functions fst′L, snd′L, dupL and tag2L. Consequently, we need
a new theoretical development to establish the preservation of well-behavedness by the
lifting/unlifting process.

3.3 Relevance-Aware Well-Behavedness

We have noted that the new internal functions dupL, fst′L, snd′L and tag2L are not well-
behaved, for different reasons. For functions fst′L and snd′L, the difference from the original
versions fstL and sndL is only in the additional wrapping/unwrapping that is required due to
the introduction of tags. As a result, as long as these functions are used in an appropriate
context, the bidirectional laws are expected to hold. But for dupL and tag2L, the new
definitions are more defined in the sense that some originally failing executions of put are
now intentionally turned into successful ones. For this change in semantics, we need to
adapt the laws to allow temporary violations and yet still establish well-behavedness of the
resulting bidirectional transformations in the end. For example, we still want unlift2 f to
be well-behaved for any f ::∀s.(L s A,L s B)→ L s C, as long as the lifting functions are
applied to well-behaved lenses.

3.3.1 Relevance-Ordering and Lawful Duplications

Central to the discussion in this and the previous subsections is the behavior of dupL. To
maintain safety, unequal values as duplications are only allowed if they have different tags
(i.e., one value must be irrelevant to the update and can be discarded). We formalize such a
property with the partial ordering between tagged values. Let us write (�) for the partial
order induced from g: that is, s� t if sg t is defined and equal to t. One can see that (�) is
the reflexive closure of O s� U t. The definition of (�) is extended to (n-ary) containers
element-wise; for example, (s1,s2)� (t1, t2) if and only if s1 � t1 and s2 � t2. Nesting of
tags is not allowed. We write ↑s for a value obtained from s by replacing all O tags with
U tags. Trivially, we have s� ↑s. But there exists s′ such that s� s′ and s′ 6= ↑s, unless s
contains only U tags.

Now we can define a variant of well-behavedness local to the U-tagged elements.

ZU064-05-FPR main 22 February 2018 18:16

16 Kazutaka Matsuda and Meng Wang

Definition 2 (Local Well-Behavedness). Let A be a type associated with (�). A bidirec-
tional transformation ` ::L A B is called locally well-behaved if the following four conditions
hold.

• (Forward Tag-Irrelevance) If v= get ` s, then for all s′ such that ↑s′= ↑s, v= get ` s′

holds.
• (Backward Inflation) For all minimal (with respect to �) s, if put ` s v succeeds as

s′, then s� s′.
• (Local Acceptability) For all s, s� put ` s (get ` s)� ↑s.
• (Local Consistency) For all s and v, assuming put ` s v succeeds as s′, then for all s′′

with s′ � s′′, get ` s′′ = v holds.

In the above, tags introduced for the flexible behavior of put must not affect the behavior
of get: ↑s′ = ↑s means that s and s′ are equal if tags are ignored. The property backward
inflation states that put puts U-tags to all the updated elements, and thus O-tagged elements
in the put result are kept unchanged, which will be used to show the naturality of (~) in
Section 3.4. The property local-acceptability is similar to acceptability, except that O-tags
are allowed to change to U-tags. The property local consistency is stronger than consistency
in the sense that get must map all values sharing the same U-tagged elements with s′ to the
same view. The idea is that O-tagged elements in s′ are not connected to the view v, and
thus changing them will not affect v. In this sense, O-tagged values must not be relevant
to the view. A similar reasoning applies to backward inflation stating that source elements
changed by put will have U-tags. Note that in this definition of local well-behavedness, tags
are assumed to appear only in the sources. As a matter of fact, only dupL and tag2L/tagL
introduce tagged views (and actually they are not locally well-behaved); but they are always
precomposed when used, as shown in the definitions of lift2 and unlift2.

We have the following compositional properties for local well-behavedness.

Lemma 2. The following properties hold for bidirectional transformations x and y with
appropriate types.

• If x is well-behaved and y is locally well-behaved, then lift x y is locally well-behaved.
• If x and y are locally well-behaved, x~ y is locally well-behaved.
• If x and y are locally well-behaved, x ◦̂ tag2L and y ◦̂ tagL are well-behaved.

Proof
We only prove the second and third properties because it is straightforward to prove the first
property.

The second property. We first show local acceptability.

put ((x ⊗̂ y) ◦̂dupL) s (get ((x ⊗̂ y) ◦̂dupL) s)
= { simplification }

put dupL s (put (x ⊗̂ y) (s,s) (get (x ⊗̂ y) (s,s)))
= { by the local acceptability of x ⊗̂ y }

put dupL s (s′,s′′) — where s� s′ � ↑s, s� s′′ � ↑s
= { by the definition of dupL and that s′g s′′ is defined }

s′g s′′ � ↑s

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 17

Note that, since s′ � ↑s and s′′ � ↑s, it follows that s′g s′′ � ↑s.
Then, we prove local consistency. Assume that put ((x ⊗̂ y) ◦̂dupL) s (v1,v2) succeeds in

s′. Then, by the following calculation, we have s′ = put x s v1 gput y s v2.

put ((x ⊗̂ y) ◦̂dupL) s (v1,v2)

= { simplification }
put dupL s (put x s v1,put y s v2)

= { definition unfolding }
put x s v1 gput y s v2

Let s′′ be a source such that s′ � s′′. Then, we prove get ((x ⊗̂ y)@dupL) s′′ = (v1,v2) as
follows.

get ((x ⊗̂ y) ◦̂dupL) s′′ (v1,v2)

= { simplification }
(get x s′′,get y s′′)

= { the local consistency of x and y }
(v1,v2)

Note that we have put x s v1 � s′ � s′′ and put y s v2 � s′ � s′′ by the definition of g.
Forward tag-irrelevance and backward inflation are straightforward.

The third property. First, we prove acceptability.

put (x ◦̂ tag2L) (s1,s2) (get (x ◦̂ tag2L) (s1,s2))

= { unfolding ◦̂ }
put tag2L (s1,s2) (put x (get tag2L (s1,s2)) (get x (get tag2L (s1,s2))))

= { unfolding the definition of get tag2L }
put tag2L (s1,s2) (put x (O s1,O s2) (get x (O s1,O s2)))

= { by the local acceptability of x }
put tag2L (s1,s2) (tag s1, tag s2) where tag = O ∨ tag = U

= { unfolding the definition of put tag2L }
(s1,s2)

The proof of the acceptability of y ◦̂ tagL is similar.
Next, we prove consistency. Assume that (s′1,s

′
2) = put (x ◦̂ tag2L) (s1,s2) v. Then, it must

be the case when there are tag1 and tag2 such that (tag1 s′1, tag2 s′2) = put x (O s1,O s2) v
where tagi is either O or U for i = 1,2. Here, we have (O s′1,O s′2)� (tag1 s′1, tag2 s′2). Then,
we have:

get (x ◦̂ tag2L) (s
′
1,s
′
2)

= { unfolding ◦̂ }
get x (get tag2L (s′1,s

′
2))

= { unfolding the definition of get tag2L (s′1,s
′
2) }

get x (O s′1,O s′2)
= { the forward tag-irrelevance of x }

get x (tag1 s′1, tag2 s′2)
= { the local consistency of x and (tag1 s′1, tag2 s′2) = put x (O s1,O s2) v }

v

ZU064-05-FPR main 22 February 2018 18:16

18 Kazutaka Matsuda and Meng Wang

The proof of the consistency of y ◦̂ tagL is similar.

Corollary 1. The following properties hold.

• lift ` ::∀s.L s A→ L s B preserves local well-behavedness, if ` :: Lens A B is well-
behaved.
• lift2 ` ::∀s.(L s A,L s B)→ L s C preserves local well-behavedness, if ` ::Lens (A,B) C

is well-behaved.

Similar to the case in Section 2, compositional reasoning of well-behavedness requires
the lens type L to be abstract.

Definition 3 (Abstract Nature of L). We say L is abstract in f ::τ if there is a polymorphic
function h of type

∀`.(∀a b.Lens a b→ (∀s. ` s a→ ` s b))
→ (∀a b.(∀s. ` s a→ ` s b)→ Lens a b)
→ (∀s. ` s ())
→ (∀s a b. ` s a→ ` s b→ ` s (a,b))
→ (∀a b c.(∀s.(` s a, ` s b)→ ` s c)→ Lens (a,b) c)
→ τ ′

satisfying f = h lift unlift unit (~) unlift2 and τ ′ = τ[`/L].

Then, we obtain the following properties from the free theorems (Voigtländer 2009b;
Wadler 1989).

Theorem 4. Let f be a function of type ∀s.(L s A,L s B)→ L s C in which L is abstract.
Then, f (x,y) is locally well-behaved if x and y are also locally well-behaved, assuming that
only well-behaved lenses are passed to lift during evaluation.

We omit the proof because we will prove the more involved version, Theorem 6, in Section 8.

Proposition 6. fst′L and snd′L are locally well-behaved.

Corollary 2. Let f be a function of type ∀s.(L s A,L s B)→ L s C in which L is abstract.
Then, unlift2 f is well-behaved, assuming that only well-behaved lenses are passed to lift

during evaluation.

3.4 Categorical Notes

Recall that Lens S (−) is a functor from the category of lenses to the category of sets and
(total) functions, which maps ` :: Lens A B to lift ` :: Lens S A→ Lens S B for any S. In the
case that S is tagged and thus partially ordered, (L S (−),~,unit) forms a lax monoidal
functor, under the following conditions.

• (~) must be natural, i.e., (lift f x)~ (lift g y) = lift (f ⊗̂g) (x~ y) for all f , g, x and y
with appropriate types.
• split3 and split′3 coincide.
• lift elimUnitLL (unit~ x) = x must hold where elimUnitLL :: Lens ((),a) a is the

bidirectional version of elimination of (), and so does its symmetric version.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 19

Intuitively, the second and the third conditions state that the mapping must respect the
monoid structure of products, with the former concerning associativity and the latter
concerning the identity elements. The first and second conditions above hold without
any additional assumptions, whereas the third condition, which reduces to sgput x s v =
put x s v, is not necessarily true if s is not minimal (if s is minimal, this property holds by
backward inflation—this is why we considered the backward inflation property). Recall
that minimality of s implies that s can only have O-tags. To get around this restriction, we
take L S A as a quotient set of Lens S A by the equivalence relation ≡ defined as x ≡ y
if get x = get y ∧ put x s = put y s for all minimal s. This equivalence is preserved by
manipulations of L-data; that is, the following holds for x, y, z and w with appropriate types.

• x≡ y implies lift ` x≡ lift ` y for any well-behaved lens `.
• x≡ y and z≡ w imply x~ z≡ y~w.
• x≡ y implies x ◦̂ tagL = y ◦̂ tagL (or x ◦̂ tag2L = y ◦̂ tag2L).

Note that the above three cases cover the only ways to construct/destruct L in f when L is
abstract. The third condition says that this “coarse” equivalence (≡) on L can be “sharpened”
to the usual extensional equality (=) by tagL and tag2L in the unlifting functions. Thus,
quotienting L with ≡, the three conditions hold, and thus we have the following theorem.

Theorem 5. (L S (−),~,unit) forms a lax monoidal functor.

The fact that our framework forms a lax monoidal functor may suggest a connection to
Haskell’s Applicative class (McBride & Paterson 2008; Paterson 2012), which shares the
same mathematical structure. It is known that Applicative is exactly an endo lax monoidal
functor (with strength) on the category of Haskell functions (Paterson 2012). However, it
is not possible to structure our code with the Applicative class, because our functor is not
endo and there are (believed to be) no exponentials in the category of lenses (Rajkumar et al.
2013). Nevertheless, one may consider the following classes similar to those in Rajkumar
et al. (2013) (unlike their type classes we consider covariant functors instead of contravariant
ones).

class LFunctor f where
lift :: Lens a b→ (f a→ f b)

class LFunctor f ⇒ LMonoidal f where
unit :: f ()
(~) :: f a→ f b→ f (a,b)

The laws for LMonoidal have already been discussed in Section 3.4. These classes have the
following instance declarations.

instance LFunctor (Lens s) where
lift ` x = ` ◦̂ x

instance Poset s⇒ LMonoidal (Lens s) where
unit = Lens (λ → ()) (λ s ()→ s)
x~ y = (x ⊗̂ y) ◦̂dupL

We then can define lift2 as:

ZU064-05-FPR main 22 February 2018 18:16

20 Kazutaka Matsuda and Meng Wang

lift2 :: Lens (a,b) c→ (∀f .LMonoidal f ⇒ (f a, f b)→ f c)
lift2 `= λ (x,y)→ lift ` (x~ y)

Now unlift and unlift2 have the types Eq a⇒ (∀f .LMonoidal f ⇒ f a→ f b)→ Lens a b
and (Eq a,Eq b)⇒ (∀f .LMonoidal f ⇒ (f a, f b)→ f c)→ Lens (a,b) c, respectively, while
their implementations are kept unchanged. Haskell programmers may prefer this class-based
interface, but it is more of a matter of taste.

4 Going Generic

In this section, we make the ideas developed in previous sections practical by extending the
technique to lists and other data structures.

4.1 Unlifting Functions on Lists

We have looked at how unlifting works for n-ary tuples in Section 3. And we now see how
the idea can be extended to lists. As a typical usage scenario, when we apply map to a lens
function lift `, we will obtain a function of type map (lift `) :: [L s A]→ [L s B]. But what
we really want is a lens of type Lens [A] [B]. The way to achieve this is to internally treat
length-n lists as n-ary tuples. This treatment effectively restricts us to in-place updates of
views (i.e., no change is allowed to the list structure); we will revisit this issue in more detail
in Section 6.1.

First, we can “split” lists by repeated pair-splitting, as follows.

lsequencelist :: [L s a]→ L s [a]
lsequencelist [] = lift nilL unit

lsequencelist (x : xs) = lift2 consL (x, lsequencelist xs)

nilL = Lens (λ ()→ []) (λ () []→ ())

consL = Lens (λ (a,as)→ (a : as)) (λ (a′ : as′)→ (a′,as′))

The name of this function is inspired by sequence in Haskell. Then the lifting function is
defined straightforwardly.

liftlist :: Lens [a] b→∀s. [L s a]→ L s b
liftlist ` xs = lift ` (lsequencelist xs)

Notice that we have liftlist idL = lsequencelist.
Tagged lists form an instance of Poset.

instance Poset a⇒ Poset [a] where
xsg ys = if length xs length ys then zipWith (g) xs ys

else ⊥ -- Unreachable in our framework

Note that the requirement that xs and ys must have the same shape is made explicit above,
though it is automatically enforced by the abstract use of L in lifted functions.

The definition of unliftlist is a bit more involved. What we need to do is to turn every
element of the source list into a projection lens and apply the lens function f .

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 21

unliftlist ::∀a b.Eq a⇒ (∀s. [L s a]→ L s b)→ Lens [a] b
unliftlist f = Lens (λ s→ get (mkLens s) s) (λ s→ put (mkLens s) s)

where
mkLens s = f (projs (length s)) ◦̂ tagListL

tagListL = Lens (map O) (λ ys→ map unTag ys)
projs n = map projL [0 . .n−1]

projL :: Int→ L [Tag a] a
projL i = Lens (λxs→ unTag (xs !! i)) (λas a→ update i (U a) as)

update :: Int→ a→ [a]→ [a]
update 0 v (: xs) = v : xs
update i v (x : xs) = x : update (i−1) v xs

Given that the need to inspect the length of the source leads to the separate definitions of
get and put in the above, there might be worry that we may lose the guarantee of well-
behavedness of the resulting lens. But this is not a problem here since the length of the
source list is an invariant of the resulting lens. Similar to lift2, liftlist is an injection with
unliftlist as its left inverse.

Example 2 (Bidirectional tail). Let us consider the function tail.

tail :: [a]→ [a]
tail (x : xs) = xs

A bidirectional version of tail is easily constructed by using lsequencelist and unliftlist as
follows.

tailL :: Eq a⇒ Lens [a] [a]
tailL = unliftlist (lsequencelist ◦ tail)

The obtained lens tailL supports all in-place updates, such as put tailL ["a","b","c"] ["B","C"] =
["a","B","C"]. In contrast, any change on list length will be rejected; specifically nilL or
consL in lsequencelist throws an error.

Example 3 (Bidirectional unlines). Let us consider a bidirectional version of unlines ::
[String]→ String that concatenates lines, after appending a terminating newline to each. For
example, unlines ["ab","c"] = "ab\nc\n". In conventional unidirectional programming,
one can implement unlines as follows.

unlines [] = ""
unlines (x : xs) = catLine x (unlines xs)

catLine x y = x++"\n"++ y

To construct a bidirectional version of unlines, we first need a bidirectional version of
catLine.

catLineL :: Lens (String,String) String
catLineL =

Lens (λ (s, t)→ s++"\n"++ t)
(λ (s, t) u→ let n = length (filter (’\n’) s)

ZU064-05-FPR main 22 February 2018 18:16

22 Kazutaka Matsuda and Meng Wang

i = elemIndices ’\n’ u !! n
(s′, t′) = splitAt i u

in (s′, tail t′))

Here, elemIndices and splitAt are functions from Data.List: elemIndices c s returns the
indices of all elements that are equal to c; splitAt i x returns a tuple where the first element
is x’s prefix of length i and the second element is the remainder of the list. Intuitively,
put catLineL (s, t) u splits u into s′ and "\n"++ t′ so that s′ contains the same number
of newlines as the original s. For example, put catLineL ("a\nbc","de") "A\nB\nC" =

("A\nB","C").
Then, construction of a bidirectional version unlinesL of unlines is straightforward; we

only need to replace "" with new "" and catLine with lift2 catLineL, and to apply unliftlist

to obtain a lens.

unlinesL :: Lens [String] String
unlinesL = unliftlist unlinesF

unlinesF ::∀s. [L s String]→ L s String
unlinesF [] = new ""
unlinesF (x : xs) = lift2 catLineL (x,unlinesF xs)

As one can see, unlinesF is written in the same applicative style as unlines. The construction
principle is: if the original function handles data that one would like to update bidirectionally
(e.g., String in this case), replace all manipulations (e.g., catLine and "") of the data with
the corresponding bidirectional versions (e.g., lift2 catLineL and new "").

Lens unlinesL accepts updates that do not change the original formatting of the view
(i.e., the same number of lines and an empty last line). For example, we have put unlinesL

["a","b","c"] "AA\nBB\nCC\n"= ["AA","BB","CC"], but put unlinesL ["a","b","c"]
"AA\nBB\n"=⊥ and put unlinesL ["a","b","c"] "AA\nBB\nCC\nD"=⊥.

Example 4 (unlines defined by foldr). Another common way to implement unlines is to
use foldr, as below.

unlines = foldr catLine ""

The same coding principle for constructing bidirectional versions applies.

unlinesL :: Lens [String] String
unlinesL = unliftlist unlinesF

unlinesF ::∀s. [L s String]→ L s String
unlinesF = foldr (curry (lift2 catLineL)) (new "")

The new unlinesF is again in the same applicative style as the new unlines, where the
unidirectional function foldr is applied to normal functions and lens functions alike.

For readers familiar with the literature of bidirectional transformation, this restriction
to in-place updates is very similar to that in semantic bidirectionalization (Matsuda &
Wang 2013; Voigtländer 2009a; Wang & Najd 2014). We will discuss the connection in
Section 9.1.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 23

4.2 Datatype-Generic Unlifting Functions

The treatment of lists is an instance of the general case of container-like datatypes. We can
view any container with n elements as an n-tuple, only to have list length replaced by the
more general container shape. In this section, we define a generic version of our technique
that works for many datatypes.

Specifically, we use the datatype-generic function traverse, which can be found in
Data.Traversable, to give data-type generic lifting and unlifting functions.

traverse :: (Traversable t,Applicative f)⇒ (a→ f b)→ t a→ f (t b)

We use traverse to define two functions that are able to extract data from the structure
holding them (contents), and redecorate an “empty” structure with given data (fill).2

newtype Const a b = Const {getConst :: a}
contents :: Traversable t⇒ t a→ [a]
contents t = getConst (traverse (λx→ Const [x]) t)

fill :: Traversable t⇒ t b→ [a]→ t a
fill t `= evalState (traverse next t) `

where next = do (a : x)← Control.Monad.State.get
Control.Monad.State.put x
return a

Here, Const a b is an instance of the Haskell Functor that ignores its argument b. It
becomes an instance of Applicative if a is an instance of Monoid. We qualified the state
monad operations get and put to distinguish them from the get and put as bidirectional
transformations.

For many datatypes such as lists and trees, instances of Traversable are straightforward
to define to the extent of being systematically derivable (McBride & Paterson 2008). The
instances of Traversable must satisfy certain laws (Bird et al. 2013); and for such lawful
instances, we have

fill (fmap f t) (contents t) = t (FillContents)

contents (fill t xs) = xs if length xs = length (contents t) (ContentsFill)

for any f and t, which are needed to established the correctness of our generic algorithm.
Note that every Traversable instance is also an instance of Functor.

We can now define a generic lsequence function as follows.

lsequence :: (Eq a,Eq (t ()),Traversable t)⇒ t (L s a)→ L s (t a)
lsequence t = lift (fillL (shape t)) (lsequencelist (contents t))

where
fillL s = Lens (λxs→ fill s xs) (λ t→ contents′ s t)
contents′ s t = if shape t s then contents t

else error "Shape Mismatch"

2 In GHC, the function contents is called toList, which is defined in Data.Foldable (Every
Traversable instance is also an instance of Foldable). We use the name contents to emphasize
the function’s role of extracting contents from structures (Bird et al. 2013).

ZU064-05-FPR main 22 February 2018 18:16

24 Kazutaka Matsuda and Meng Wang

Here, shape computes the shape of a structure by replacing elements with units, i.e.,
shape t = fmap (λ → ()) t. Also, we can make a Poset instance as follows.3

instance (Poset a,Eq (t ()),Traversable t)⇒ Poset (t a) where
t1 g t2 = if shape t1 shape t2 then fill t1 (contents t1 g contents t2)

else ⊥ -- Unreachable, in our framework

Following the example of lists, we have a generic unlifting function with length replaced by
shape.

unliftT :: (Eq (t ()),Eq a,Traversable t)⇒ (∀s. t (L s a)→ L s b)→ Lens (t a) b
unliftT f = Lens (λ s→ get (mkLens s) s) (λ s→ put (mkLens s) s)

where
mkLens s = f (projTs (shape s)) ◦̂ tagTL
tagTL = Lens (fmap O) (const$ fmap unTag)
projTs sh = let n = length (contents sh)

in fill sh [projTL i sh | i← [0 . .n−1]]
projTL i sh = Lens (λ s→ unTag (contents s !! i))

(λ s v→ fill sh (update i (U v) (contents s)))

Here, projTL i t is a bidirectional transformation that extracts the ith element in t with the
tag erased. Similarly to unliftlist, the shape of the source is an invariant of the derived lens.

5 An Application: Bidirectional Evaluation

In this section, we demonstrate the expressiveness of our framework by defining a bidi-
rectional evaluator in it. As we will see in a larger scale, programming in our framework
is very similar to what it is in conventional unidirectional languages, showing the distinct
advantage of our approach.

An evaluator can be seen as a mapping from an environment to a value of a given
expression. A bidirectional evaluator (Hidaka et al. 2010) additionally takes the same
expression but maps an updated value of the expression back to an updated environment, so
that evaluating the expression under the updated environment results in the value.

Consider the following syntax for a higher-order call-by-value language.

data Exp = ENum Int | EInc Exp
| EVar String | EApp Exp Exp
| EFun String Exp deriving Eq

data Val a = VNum a
| VFun String Exp (Env a) deriving Eq

data Env a = Env [(String,Val a)] deriving Eq

This definition is standard, except that the type of values is parameterized to accommodate
both Val (L s Int) and Val Int for updatable and ordinary integers, and so does the type of
environments. It is not difficult to make Val and Env instances of Traversable.

3 This definition actually overlaps with those for lists and pairs. So we either need to have “wrapper”
type constructors, or enable OverlappingInstances.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 25

Using our framework, writing a bidirectional evaluator is almost as easy as writing the
usual unidirectional one.

eval :: Env (L s Int)→ Exp→ Val (L s Int)
eval env (ENum n) = VNum (new n)
eval env (EInc e) = let VNum v = eval env e

in VNum (lift incL v)
eval env (EVar x) = lkup x env
eval env (EApp e1 e2) = let VFun x e′ (Env env′) = eval env e1

v2 = eval env e2

in eval (Env ((x,v2) : env′)) e′

eval env (EFun x e) = VFun x e env

Here, incL :: Lens Int Int is a bidirectional version of (+1) that can be defined as follows.

incL = Lens (+1) (λ x→ x−1)

and lkup :: String→ Env a→ a is a lookup function.
A lens evalL :: Exp→ Lens (Env Int) (Val Int) naturally arises from eval.

evalL :: Exp→ Lens (Env Int) (Val Int)
evalL e = unliftT (λenv→ liftT idL $ eval env e)

As an example, let’s consider the following expression which essentially computes x+65536
by using a higher-order function twice in the object language.

expr = twice@@ twice@@ twice@@ twice@@ inc@@ x
where

twice = EFun "f"$EFun "x"$EVar "f"@@ (EVar "f"@@EVar "x")
x = EVar "x"
inc = EFun "x"$EInc (EVar "x")

infixl 9@@ -- @@ is left associative
(@@) = EApp

For easy reading, we translate the above expression to Haskell syntax.

expr = ((((twice twice) twice) twice) inc) x
where twice f x = f (f x)

inc x = x+1

Now giving an environment that binds the free variable x, we can run the bidirectional
evaluator as follows, with env0 = Env [("x",VNum 3)].

Main> get (evalL expr) env0

VNum 65539
Main> put (evalL expr) env0 (VNum 65536)
Env [("x",VNum 0)]

As a remark, this seemingly innocent implementation of evalL is actually highly non-
trivial. It essentially defines compositional (or modular) bidirectionalization (Matsuda &
Wang 2013; Matsuda et al. 2007; Voigtländer 2009a; Wang & Najd 2014) of programs that

ZU064-05-FPR main 22 February 2018 18:16

26 Kazutaka Matsuda and Meng Wang

are monomorphic in type and use higher-order functions in definition—something that has
not been achieved in bidirectional-transformation research so far.

6 Extensions

In this section, we extend our framework in two dimensions: allowing shape changes
via lifting lens combinators, and allowing (L s A)-values to be inspected during forward
transformations following our previous work (Matsuda & Wang 2013, 2014).

6.1 Lifting Lens-Combinators

An advantage of the original lens combinators (Foster et al. 2007) (that operate directly on
the non-functional representation of lenses) over what we have presented so far is the ability
to accept shape changes to views. We argue that our framework is general enough to easily
incorporate such lens combinators.

Since we already know how to lift/unlift lenses, it only takes some plumbing to be
able to handle lens combinators, which are simply functions over lenses. For example, for
combinators of type Lens A B→ Lens C D we have

liftC :: Eq a⇒ (Lens a b→ Lens c d)→ (∀s.L s a→ L s b)→ (∀t.L t c→ L t d)
liftC c f = lift (c (unlift f))

Using the analogy to higher-order abstract syntax (Church 1940; Huet & Lang 1978; Miller
& Nadathur 1987; Pfenning & Elliott 1988), the polymorphic arguments of the lifted combi-
nators represent closed expressions; for example, a program like λx→ . . .c (. . .x . . .) . . .
does not type-check when c is a lifted combinator.

As an example, let us consider the following lens combinator mapDefaultC.

mapDefaultC :: a→ Lens a b→ Lens [a] [b]
mapDefaultC d `= Lens (map (get `)) (λ s v→ go s v)

where go ss [] = []

go [] (v : vs) = put ` d v : go [] vs
go (s : ss) (v : vs) = put ` s v : go ss vs

When given a lens on elements, mapDefaultC d turns it into a lens on lists. The default value
d is used when new elements are inserted to the view, making the list lengths different. We
can incorporate this behavior into our framework. For example, we can use mapDefaultC as
in the following, which in the forward direction is essentially map (uncurry (+)).

mapAddL :: Lens [(Int, Int)] [Int]
mapAddL = unlift mapAddF

mapAddF ::∀t.L t [(Int, Int)]→ L t [Int]
mapAddF xs = mapF (0,0) (lift addL) xs

mapF :: Eq a⇒ a→ (∀s.L s a→ L s b)→ (∀t.L t [a]→ L t [b])
mapF d = liftC (mapDefaultC d)

addL :: Lens (Int, Int) Int
addL = Lens (λ (x,y)→ x+ y) (λ (x,) v→ (x,v− x))

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 27

This lens mapAddL constructed in our framework handles shape changes without any
trouble.

Main> put mapAddL [(1,1),(2,2)] [3,5]
[(1,2),(2,3)]
Main> put mapAddL [(1,1),(2,2)] [3]
[(1,2)]
Main> put mapAddL [(1,1),(2,2)] [3,5,7]
[(1,2),(2,3),(0,7)]

The trick is that the expression mapF (0,0) (lift addL) has type ∀s.L s [(Int, Int)]→
L s [Int], where the list occurs inside L s, contrasting to map (lift addL)’s type ∀s. [L s (Int, Int)]→
[L s Int]. Intuitively, the type constructor L s can be seen as an updatability annotation;
L s [(Int, Int)] means that the list itself is updatable, whereas [L s (Int, Int)] means that only
the elements are updatable. Here is the trade-off: the former has better updatability at the
cost of a special lifted lens combinator; the latter has less updatability but simply uses the
usual map directly. Our framework enables programmers to choose either style, or anywhere
in between freely.

This position-based approach used in mapDefaultC is not the only way to resolve shape
discrepancies. We can also match elements according to keys (Barbosa et al. 2010; Foster
et al. 2010). As an example, let us consider a variant of the map combinator.

mapByKeyC :: Eq k⇒ a→ Lens a b→ Lens [(k,a)] [(k,b)]
mapByKeyC d `= Lens (map (λ (k,s)→ (k,get ` s))) (λ s v→ go s v)

where go ss [] = []

go ss ((k,v) : vs) = case lookup k ss of
Nothing→ (k,put ` d v) : go ss vs
Just s → (k,put ` s v) : go (del k ss) vs

del k [] = []

del k ((k′,s) : ss) | k k′ = ss
| otherwise = (k′,s) : del k ss

Lenses constructed with mapByKeyC match with keys instead of positions.

mapAddByKeyL :: Eq k⇒ Lens [(k,(Int, Int))] [(k, Int)]
mapAddByKeyL = unlift mapAddByKeyF

mapAddByKeyF :: Eq k⇒∀t.L t [(k,(Int, Int))]→ L t [(k, Int)]
mapAddByKeyF xs = mapByKeyF (0,0) (lift addL) xs

mapByKeyF :: (Eq k,Eq a)⇒
a→ (∀s.L s a→ L s b)→ (∀t.L t [(k,a)]→ L t [(k,b)])

mapByKeyF d = liftC (mapByKeyC d)

Let s be [("A",(1,1)),("B",(2,2))]. Then, the obtained lens works as follows.

Main> put mapAddByKeyL s [("B",5),("A",3)]
[("B",(2,3)),("A",(1,2))]
Main> put mapAddByKeyL s [("A",3)]
[("A",(1,2))]

ZU064-05-FPR main 22 February 2018 18:16

28 Kazutaka Matsuda and Meng Wang

Main> put mapAddByKeyL s [("B",5),("C",7),("A",3)]
[("B",(2,3)),("C",(0,7)),("A",(1,2))]

6.2 Observations of Lifted Values

So far we have programmed bidirectional transformations ranging from polymorphic to
monomorphic functions. For example, unlines is monomorphic because its base case returns
a String constant, which is nicely handled in our framework by the function new. At the
same time, it is also obvious that the creation of constant values is not the only cause of
a transformation being monomorphic (Matsuda & Wang 2013, 2014). For example, let us
consider the following toy program.4

bad (x,y) = if x new 0 then (x,y) else (x,new 1)

In this program, the behavior of the transformation depends on the “observation” made to a
value that may potentially be updated in the view. Then the naively obtained lens badL =

unlift2 (lift2 idL ◦ bad) would violate well-behavedness, as put badL (0,2) (1,2) = (1,2)
but get badL (1,2) = (1,1).

Our previous work (Matsuda & Wang 2013, 2014) tackles this problem by using a
monad to record observations, and to enforce that the recorded observation results remain
unchanged while executing put. The same technique can be used in our framework, and
actually in a simpler way due to our new compositional formalization.

newtype R a b = R (Poset a⇒ a→ (b,a→ Bool))

We can see that R A B represents gets with restricted source updates: taking a source s :: A, it
returns a view of type B together with a constraint of type A→ Bool which must remain
satisfied amid updates of s. Formally, giving R m :: R A B, for any s, if (,p) = m s then we
have: (1) p s = True; (2) p s′ = True implies m s = m s′ for any s′. It is not difficult to make
R s an instance of Monad—it is a composition of Reader and Writer monads. We only show
the definition of (>>=).

R m>>= f = R$λ s→ let (x,c1) = m s
(y,c2) = let R k = f x in k s

in (y,λ s→ c1 s ∧ c2 s)

Then, we define a function that produces R values, and a version of unlifting that enforces
the observations gathered.

observe :: Eq w⇒ L s w→ R s w
observe x = R (λ s→ let w = get x s in (w,λ s′→ get x s′ w))

unliftM2 :: (Eq a,Eq b)⇒ (∀s.(L s a,L s b)→ R s (L s c))→ Lens (a,b) c
unliftM2 f = Lens (λ s→ get (mkLens f s) s) (λ s→ put (mkLens f s) s)

where

4 This code actually does not type check as () on (L s Int)-values depends on a source and has to
be implemented monadically. But we do not fix this program as it is meant to be a non-solution that
will be discarded.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 29

mkLens f s =
let (`,p) = let R m = f (fst′L,snd′L) in m (get tag2L s)

`′ = ` ◦̂ tag2L
put′ s v = let s′ = put `′ s v

in if p (get tag2L s′) then s′

else error "Changed Observation"
in Lens (get `′) put′

Although we define the get and put components of the resulting lens separately in unliftM2,
well-behavedness is guaranteed as long as R and L are used abstractly in f , where this
abstract nature of R and L are formalized as follows.

Definition 4 (Abstract Nature of L and R). We say L and R are abstract in f :: τ if there
is a polymorphic function h of type

∀` r.(∀a b.Lens a b→ (∀s. ` s a→ ` s b))
→ (∀a b.(∀s. ` s a→ ` s b)→ Lens a b)
→ (∀s. ` s ())
→ (∀s a b. ` s a→ ` s b→ ` s (a,b))
→ (∀a b c.(∀s.(` s a, ` s b)→ ` s c)→ Lens (a,b) c)
→ (∀s w.Eq w⇒ ` s w→ r s w)
→ (∀a b.(∀s. ` s a→ r s (` s b))→ Lens a b)
→ (∀a b c.(∀s.(` s a, ` s b)→ r s (` s c))→ Lens (a,b) c)
→ τ ′

satisfying f = h lift unlift unit (~) unlift2 observe unliftM unliftM2 and τ ′ = τ[`/L,r/R].

Note that, similarly to unliftM2, we can define unliftM and unliftMT, as monadic versions
of unlift and unliftT. Formally, we have the following theorem.

Theorem 6. Let f be a function of type ∀s.(L s A,L s B)→ R s (L s C) in which L and R
are abstract. Then unliftM2 f is well-behaved, if all the following conditions hold.

• only well-behaved lenses are passed to lift during evaluation,
• w in observe :: Eq w⇒ L s w→ R s w is only instantiated to types W such that ()

on W coincides with the semantic (observational) equality.

We postpone the proof till Section 8.
We can now place observe at where observations happens, and use unliftM to guard

against changes to them.

good ::∀s.(L s Int,L s Int)→ R s (L s (Int, Int))
good (x,y) = do b← liftO2 () x (new 0)

return (if b then x~ y else x~new 1)

Here, liftO2 is defined as follows.

liftO2 :: Eq w⇒ (a→ b→ w)→ L s a→ L s b→ R s w
liftO2 p x y = liftO (uncurry p) (x~ y)

liftO :: Eq w⇒ (a→ w)→ L s a→ R s w

ZU064-05-FPR main 22 February 2018 18:16

30 Kazutaka Matsuda and Meng Wang

liftO p x = observe (lift (Lens p unused) x)
where unused s v | v p s = s

Then the obtained lens goodL = unliftM2 good successfully rejects illegal updates, as
put goodL (0,2) (1,2) =⊥. Note that unused is unused as it stands in our framework; recall
that observe x only uses the get component of x.

One might have noticed that the definition of good is in the Monadic style—not applicative
in the sense of (McBride & Paterson 2008). This is necessary for handling observations, as
the effect of (R s) can depend on the value in it (Lindley et al. 2011).

Example 5 (nub). As a slightly involved example, let us consider a bidirectional version of
nub, which removes duplicate elements in a list as nub [1,1,2,3,2] = [1,2,3].

nubF :: Eq a⇒ [L s a]→ R s [L s a]
nubF [] = return []

nubF (x : xs) = do xs′← deleteF x xs
r← nubF xs′

return (x : r)

deleteF :: Eq a⇒ L s a→ [L s a]→ R s [L s a]
deleteF x [] = return []

deleteF x (y : ys) = do b← liftO2 () x y
r← deleteF x ys
return (if b then r else y : r)

nubL :: Eq a⇒ Lens [a] [a]
nubL = unliftMT (fmap lsequence◦nubF)

The obtained lens nubL works as follows.

Main> get nubL [1,1,2,3,2]
[1,2,3]
Main> put nubL [1,1,2,3,2] [1,2,6]
[1,1,2,6,2]

However, there is a limitation: nubL cannot change any duplicated elements.

Main> put nubL [1,1,2,3,2] [1,5,6]
*** Exception: Changed Observation

Unlike the previous example that updates 3, we have two copies of 2 in the source: the first
one appears as the third element and the second one appears as the last element. They are
compared by , and the first one comes in the view while the second one is dropped. This
also imposes a constraint on the source that the third element and the last element must be
equal (but not necessarily remain as 2). Thus, we cannot change the 2 in the view because it
changes only the first occurrence of 2 while leaving the second occurrence untouched.

Voigtländer (2009a) addresses the problem by treating equal elements in the source as
the “same”, where a change to one automatically triggers a change to others. In the above
example, if we can update both occurrences of 2 simultaneously to 5, no bidirectional laws
will be violated.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 31

With a small amount of additional work, we can incorporate this idea while keeping the
definition of nubF. First, we prepare a datatype in which the “same” elements are merged
to one.

data EList a = EList [Int] [(Int,a)]

Intuitively, EList indexes elements: its first parameter is the list of Int-indices and the second
parameter is an injective mapping from the indices to actual list elements. It is easy to
decompose a list to EList, and vice versa.

decompose :: Eq a⇒ [a]→ EList a
decompose xs = let ys = nub xs

in EList [fromJust (findIndex (x) ys) | x← xs] (zip [0 . .] ys)

recompose :: EList a→ [a]
recompose (EList is m) = [fromJust (lookup i m) | i← is]

Here, findIndex :: Eq a⇒ a→ [a]→Maybe Int defined in Data.List, is a function that
takes an element x and a list xs, and returns the index of the first occurrence of x in xs if it
exists. The function fromJust is a function defined by fromJust (Just x) = x. For example,
decompose [A,A,B,C,B] results in EList [0,0,1,2,1] [(0,A),(1,B),(2,C)].

From the two functions decompose and recompose, we can define lens decomposeL as
follows.

decomposeL :: Eq a⇒ Lens [a] (EList a)
decomposeL = Lens decompose (λ v→ recompose′ v)

where recompose′ v = let s = recompose v
in if v decompose s then s else⊥

Function recompose′ is a variant of recompose that actually checks the invariant on EList.
That is, for EList is m, m must be injective and defined for all the indices in is. This check is
conservative, but works fine for our purpose.

Now, we are ready to generalize nubL.

nubL′ :: Eq a⇒ Lens [a] [a]
nubL′ = unliftMT (λxs→ fmap lsequence (nubF (recompose xs))) ◦̂decomposeL

Note that recompose xs type-checks because recompose :: EList a→ [a] does not require
Eq for a.

The new lens nubL′ accepts more updates than nubL

Main> put nubL′ [1,1,2,3,2] [4,5,6]
[4,4,5,6,5]

without compromising the bidirectional laws.

Main> put nubL′ [1,1,2,3,2] [4,5,5]
*** Exception: Changed Observation

As a remark, automatically treating all equal elements as the same may not always be
the most desirable. Our previous work (Matsuda & Wang 2014) addresses the problem by
selective indexing: only the elements that pass an equality check occurring in the execution

ZU064-05-FPR main 22 February 2018 18:16

32 Kazutaka Matsuda and Meng Wang

of get are considered the same. It is not obvious how our current framework can be extended
to achieve this because now elements can be compared after applying lifted lens functions,
which may require us to index elements in intermediate views, unlike the situation in
previous work (Matsuda & Wang 2014; Voigtländer 2009a) where only source elements are
indexed.

7 An XML Transformation Example

XML transformation is a common application area of bidirectional programming, where
data in different XML formats are synchronized through transformations going both ways.
In this section, we program such transformations in our framework with the extensions
discussed in Section 6.2. Specifically, we implement a slightly simplified version of the
query Q5 of Use Case “STRING” in XML Query Use Cases (http://www.w3.org/TR/
xquery-use-cases). Different from the existing first-order languages specialized for
bidirectional XML transformations (Fegaras 2010; Liu et al. 2007; Pacheco et al. 2014a),
our language is general purpose, and, as will be demonstrated by this exercise, can be
seamlessly integrated with an existing functional framework for transforming XML that
involves higher-order features.

The basic idea follows from our previous work (Matsuda & Wang 2013, 2014). We use
the established HaXML framework (Wallace & Runciman 1999) to construct XML transfor-
mations using filters—functions of type a→ [b]. Adapting it to our context of bidirectional
transformations with observations, we will use filters of type L s a→ ListT (R s) (L s b),
where the monad transformer ListT in Control.Monad.List is defined by

newtype ListT m a = ListT {runListT :: m [a]}

with an implementation of the function “lift” of type Monad m⇒ m a→ ListT m a. To
avoid name conflicts, we use the following type-specialized version.

liftListT :: Monad m⇒ m a→ ListT m a
liftListT = Control.Monad.Trans. lift

The type constructor ListT m is an instance of MonadPlus in Control.Monad, which gives
us mplus :: MonadPlus m⇒ m a→ m a→ m a and mzero :: MonadPlus m⇒ m a. For those
who are familiar with monad transformer laws, R s is a commutative monad in our case, and
thus ListT (R s) is a monad.

7.1 A Datatype for XML

To start with, we define a datatype to represent XML elements. Following our previous
work (Matsuda & Wang 2013, 2014), we use a simple rose-tree representation as follows.

data Tree a = Node a [Tree a] deriving (Eq,Functor,Foldable,Traversable)
data Label = E String | T String deriving Eq

Here, E and T stand for “element name” and “text” respectively. We shall omit other features
of XML that cannot be expressed in this datatype, notably attributes, IDs and IDREFs,
schemas, and namespaces.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 33

For example, an XML fragment

<content><par>Today, Gorilla Corporation announced that ...</par>
<par>As a result of this acquisition, ...</par></content>

is represented as follows.

Node (E "content") [
Node (E "par") [

Node (T "Today, Gorilla Corporation announced that ...") []],
Node (E "par") [

Node (T "As a result of this acquisition, ...") []]]

The following function label is sometimes useful to write examples.

label :: Tree a→ a
label (Node lab) = lab

Then, we define a type of (bidirectional) filters as follows.

type BFilter s a = Tree (L s a)→ ListT (R s) (Tree (L s a))

7.2 Basic Filters

As in our previous work (Matsuda & Wang 2013, 2014), we introduce several basic filters.
The simplest filter keep keeps its input.

keep :: BFilter s a
keep x = return x

Filter children extracts the children of a node.

children :: BFilter s a
children (Node ts) = ListT $ return ts

Filter ofLabel lab returns the input if its root has the label lab, and fails otherwise.

ofLabel :: L s Label→ BFilter s Label
ofLabel lab t = do guardM $ liftListT $ liftO2 () (label t) lab

return t

Here, guardM is a variant of guard from Control.Monad which takes a monadic argument
instead (function guard fails if its argument is False, and does nothing otherwise.)

guardM :: MonadPlus m⇒ m Bool→ m ()

guardM x = x>>=guard

Filters are composable by combinators.

(/>) :: BFilter s a→ BFilter s a→ BFilter s a
f />g = f >=> children>=>g

Here, (>=>) is the Kleisli composition operator in Control.Monad defined by (f >=>g) x =
f x>>=g. The operator (/>) is useful for implementing the XPath axis “/”. For example, the

ZU064-05-FPR main 22 February 2018 18:16

34 Kazutaka Matsuda and Meng Wang

filter keep/>ofLabel (new (E "content")) extracts content elements from the children
of its input, and the filter keep/> keep/> keep extracts the grandchildren of its input.

Another useful combinator is deep defined as follows.

deep :: BFilter s a→ BFilter s a
deep f t = bfs [t] []

where
bfs [] [] = mzero
bfs [] qs = bfs (reverse qs) []
bfs (t@(Node lab ts) : rest) qs = do ck← gather (f t)

case ck of
[]→ bfs rest (reverse ts++qs)
→ return t ‘mplus‘ bfs rest qs

The expression deep f t applies filter f to each subtree of t in the breadth-first manner, and
combines by mplus the subtrees for which f succeeds. An auxiliary function gather gathers
results: for example children y produces one child at a time, and gather (children y) gathers
the children in a list.

gather :: Monad m⇒ ListT m a→ ListT m [a]
gather (ListT x) = ListT $ x>>= (λa→ return [a])

Combinator deep is useful for implementing the XPath axis “//”. For example, the filter
deep (ofLabel (new $E "news_item")) returns all the news_item elements within the
input tree.

Sometimes, we want to extract the nth element of a query result. This is done by using
the filter /!n defined as follows.

(/!) :: BFilter s a→ Int→ BFilter s a
f /!n = λxs→ do rs← gather (f xs)

return (rs !! n)

7.3 Query Example

Now, we are ready to write a bidirectional query of Q5 (of Use Case “STRING” in XML
Query Use Cases). The query extracts summaries of the news items (specifically, titles, dates
and the first paragraphs) that contains “Gorilla Corporation” in their “content”s; for
example, for the input shown in Figure 1, it returns the XML shown in Figure 2.5 Assuming
that the input is in a file named “string.xml”, this query is written in XQuery as shown in
Figure 3.

Figure 4 shows the bidirectional version of Q5 implemented in our framework. Here,
catDateL is a lens whose get takes a triple (t,d, p) and returns a concatenated string with

5 Both XMLs are a simplified version of the sample input and output for Q5 of Use Case “STRING”
in XML Query Use Cases (http://www.w3.org/TR/xquery-use-cases). In the original, par
may contain a sequence of text and elements rather than merely text. This simplification does not
affect the original Q5 in XQuery, but does simplify our version written in Haskell.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 35

<news>
<news_item>

<title>Gorilla Corporation acquires Example.com</title>
<content>

<par>Today, Gorilla Corporation announced that ...</par>
<par>As a result of this acquisition, ...</par>

</content>
<date>2000-01-20</date>

</news_item>
<news_item>

<title>Foobar Corporation releases its new line of Foo products</title>
<content>

<par>Foobar Corporation releases ...</par>
<par>The President of Foobar Corporation announced that ...</par>

</content>
<date>2000-01-20</date>

</news_item>
<news_item>

<title>Foobar Corporation is suing Gorilla Corporation</title>
<content>

<par>In surprising developments today, ...</par>
<par>The tension between Foobar and Gorilla Corporations ...</par>

</content>
<date>2000-01-20</date>

</news_item>
</news>

Fig. 1. Input XML

<item_summary>Gorilla Corporation acquires Example.com. 2000-01-20.
Today, Gorilla Corporation announced that, ...</item_summary>
<item_summary>Foobar Corporation is suing Gorilla Corporation. 2000-01-20.
In surprising developments today, ...</item_summary>

Fig. 2. Output XML

for $item in doc("string.xml")//news_item
where contains(string($item/content), "Gorilla Corporation")
return

<item_summary>
{ concat($item/title,". ") }
{ concat($item/date,". ") }
{ string(($item//par)[1]) }

</item_summary>

Fig. 3. Query Q5 of Use Case “String” in XML Query Use Cases

". ", and whose put takes a string in the format “\. \d\d\d\d-\d\d-\d\d\. ” (the
Perl-compatible regular-expression format), and decompose it to a triple. The code looks
complicated, but this complication mainly comes from writing XML queries in a functional
programming language, instead of bidirectional programming. It is worth mentioning that
q5 cannot be written in our previous framework (Matsuda & Wang 2013, 2014) as we are

ZU064-05-FPR main 22 February 2018 18:16

36 Kazutaka Matsuda and Meng Wang

q5 :: Tree (L s Label)→ ListT (R s) [Tree (L s Label)]
q5 doc = gather $do

item← deep (ofLabel (new$E "news_item")) doc
cont← (keep/>ofLabel (new$E "content")) item
guardM $ liftListT $
liftO (λ s→ "Gorilla Corporation" ‘isInfixOf ‘ strings s)$ lsequence cont

title ← (keep/>ofLabel (new$E "title")/> keep) item
date← (keep/>ofLabel (new$E "date")/> keep) item
let t = lift unTextL$ label title
let d = lift unTextL$ label date
par0← (deep (ofLabel (new$E "par"))/!0/> keep) item
let p = lift unTextL$ label par0
return$Node (new$E "item_summary") [Node (lift3 catDateL (t,d,p)) []]

unTextL :: Lens Label String
unTextL = Lens (λ (T t)→ t) (λ t→ T t)

strings :: Tree Label→ String
strings (Node (T x) xs) = x
strings (Node xs) = concatMap strings xs

q5L :: Lens (Tree Label) [Tree Label]
q5L = unliftMT (λx→ fmap (lsequence◦ fmap lsequence)$pick$q5 x)

pick :: Monad m⇒ ListT m a→ m a
pick (ListT x) = x>>=λa→ return (head a)

Fig. 4. Query Q5 in Our Framework

reusing lenses (such as catDateL) as blackboxes through lifting—a key advantage of our
framework.

7.4 Updatability

By applying get q5L to the XML data in Figure 1 (encoded in Haskell), we obtain a piece of
data that corresponds to the XML in Figure 2. We can update the extracted strings as long as
they still contain delimiters matching the regular expression “\. \d\d\d\d-\d\d-\d\d\. ”.
This means other updates such as insertions, deletions and changes to element names
item_summary are (rightfully) prohibited.

As an example, consider changing the text of the second extracted item as follows.

Foobar Corporation is suing Gorilla Corporation today. 2015-10-20.
In surprising developments today, YEAH! ...

We have appended “today” to the title part, changed the date string, and inserted “YEAH!”.
Executing put q5L on the new text succeeds and changes the corresponding parts in the
original input XML. That is, “today” is appended to the title text, “2015-10-20” is set as
the new date and “YEAH!” is inserted in the first paragraph of the content.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 37

8 Correctness

In this section, we prove Theorem 6 (Proofs of Theorems 1 and 4 are similar and thus
omitted). Our proof is based on the free theorems (Reynolds 1983; Voigtländer 2009b;
Wadler 1989). It is worth noting that we only need to use unary parametricity instead of
the binary one adopted in previous approaches (Matsuda & Wang 2013, 2014; Voigtländer
2009a).

8.1 Free Theorem

We firstly review the free theorems based on unary parametricity.
Roughly speaking, free theorems are theorems obtained as corollaries of relational

parametricity (Bernardy et al. 2012; Reynolds 1983; Vytiniotis & Weirich 2010), which
states that, for a closed term f of type T , f belongs to a certain relational interpretation of
T . A simple example of a free theorem is that a (total) function f of type ∀a.a→ a is the
identity function, because f preserves any properties on the input.

We start by introducing some notations. We write R ::Pred(A) if R is a unary relation (i.e.,
a predicate) on A; we identified a predicate on A with the set of A-elements satisfying the
predicate. For predicates R :: Pred(A) and R′ :: Pred(B), we write R→ R′ :: Pred(A→ B)
for the predicate on functions { f | ∀x ∈ R. f x ∈ R′}, and (R,R′) :: Pred((A,B)) for the
predicate on pairs {(x,y) | x ∈ R,y ∈ R′}. For a polymorphic term f of type ∀a.T and a
type S, we write fS for the instantiation of f with S, which has type T [S/a]. For simplicity,
we sometimes omit the subscript and simply write f for fS if S is clear from the context or
irrelevant.

We introduce a unary relational interpretation JτK1
ρ

of types, where ρ is a mapping from
type variables to predicates, as follows.

JaK1
ρ

= ρ(a)
JBK1

ρ
= {e | e :: B} if B is a base type

JT1→ T2K1
ρ
= JT1K1

ρ
→ JT2K1

ρ

J(T1,T2)K1
ρ

= (JT1K1
ρ
,JT2K1

ρ
)

J∀a.TK1
ρ

=
{

u
∣∣∣∀R :: Pred(S).uS ∈ JT K1

ρ[α→R]

}
.

Here, ρ[a 7→ R] extends ρ with a 7→ R. If ρ = /0, we sometimes write JT K1 instead of JT K1
/0.

We abuse the notation to write J∀α.τK1 as ∀R.F where F is the interpretation JτK1
{α 7→R}. For

example, we write ∀R.∀S.R→ S for J∀α.∀β .α → β K. For a base type B, we also write B
for JBK1. We identify the lens type Lens A B with the pairs of functions (A→ B,A→ B→ A).
Accordingly, we write Lens S T to mean (S→ T,S→ T→ S).

Then, parametricity states that, for a closed term f of a closed type τ , f is in JτK1. Free
theorems are theorems obtained by instantiating parametricity.

Voigtländer (2009b) extends parametricity to a type system with type constructors. A key
notion in his result is relational action.

Definition 5 ((Unary) Relational Action). For a type constructor κ , F is called a rela-
tional action on κ , denoted by F :: Pred(κ), if F maps any predicate R :: Pred(τ) for every
closed type τ to FR :: Pred(κ τ).

ZU064-05-FPR main 22 February 2018 18:16

38 Kazutaka Matsuda and Meng Wang

Accordingly, the relational interpretations are extended as:

JκK1
ρ

= ρ(κ)

Jτ1 τ2K1
ρ
= Jτ1K1

ρ
Jτ2K1

ρ

J∀κ.τK1 =
{

u
∣∣∣∀F :: Pred(κ).uκ ∈ JτK1

ρ[κ 7→F]

}
Parametricity holds also with this relational interpretation (Bernardy et al. 2012; Vytiniotis
& Weirich 2010). Here, κ is a type constructor of kind ∗→ ∗, and thus the quantified F is a
relational action. The notation of relational action can be extended to type constructors of
kinds ∗→ ∗→ ∗, ∗→ ∗→ ∗→ ∗ and so on.

8.2 Proof of Theorem 6

First, we state a free theorem for functions of the type mentioned in Definition 4.

Lemma 3 (A Free Theorem). Let f :: τ be a function in which L and R are abstract, and
τ ′ be a type τ[`/L,r/R]. For any F :: Pred(L) and M :: Pred(R) satisfying the following
conditions:

• lift ∈ ∀T.∀U.Lens T U→ (∀S.F S T→ F S U).
• unlift ∈ ∀T.∀U.(∀S.F S T→ F S U)→ Lens T U.
• unit ∈ ∀T.Lens T ().
• (~) ∈ ∀T.∀U.∀S.F S T→ F S U→ F S (T,U).
• unlift2 ∈ ∀T.∀U.∀R.(∀S.(F S T,F S U)→ F S R)→ Lens (T,U) R.
• observe ∈ ∀S.F S T →M S T for any unary relation T on a type with decidable

semantic equality ().
• unliftM ∈ ∀T.∀U.(∀S.F S T→MS (F S U))→ Lens T U.
• unliftM2 ∈ ∀T.∀U.∀R.(∀S.(F S T,F S U)→MS (F S R))→ Lens (T,U) R.

we have f ∈ Jτ ′K{ 7̀→F,r 7→M}.

Thanks to the abstract nature of L and R in f , we can use Lemma 3. Concretely, we use
the following F and M.

F S R = {` | ` ∈ L S R, ` is locally well-behaved}

MSR =

R m

∣∣∣∣∣∣∣∣
∀s ∈ S. let (x,p) be m s,

x ∈ R∧
p s = True∧
∀s′ ∈ S.p s′ = True⇒ m s = m s′

It is worth noting that F S R⊆ L S R and MSR⊆ R S R.

Assume that all the conditions required by Lemma 3 are fulfilled. Then, for a function
f of type ∀s.(L s A,L s B)→ R s (L s C) in which L and R are abstract, we have f ∈
(F S A,F S B)→MS (F S C) for any predicate S. Since fst′L belongs to F (Tag A,Tag B) A
and snd′L belongs to F (Tag A,Tag B) B, we have that ` in the definition of mkLens f s called
by unliftM2 f is locally well-behaved for all s, and thus `′ is well-behaved by Lemma 2. Since
p (get tag2L s) True holds from the definition of M, mkLens f s satisfies acceptability.
Since put (mkLens f s) is less defined than put `′, mkLens f s satisfies consistency. This
means that mkLens f s is well-behaved for any s. We are left to show unliftM2 f is

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 39

well-behaved. Although the acceptability of unliftM2 f comes almost directly from the
acceptability of mkLens f s, more effort is needed to show the consistency of unliftM2 f .
Notice that this is the main difference between Theorem 6 and Theorem 4 after application
of the free theorem.

Here, the last line of M plays an important role. Assume that put (mkLens f s) s v succeeds
in s′. We have p (get tag2L s) = p (get tag2L s′) = True for p in the definition of mkLens f s.
Then, by the definition of M, we have that (let R m = f (fst′L,snd′L) in (get tag2L s)) is equal
to (let R m = f (fst′L,snd′L) in (get tag2L s′)) by f (fst′L,snd′L) ∈M S (F S C). The rest of
computation of mkLens f s does not depend on s, and thus mkLens f s = mkLens f s′ holds.
Therefore, we have

get (unliftM2 f) (put (unliftM2 f) s v)
= { put (mkLens f s) s v succeeds in s′ }

get (mkLens f s′) (put (mkLens f s) s v)
= { the above discussion }

get (mkLens f s) (put (mkLens f s) s v)
= { the consistency of mkLens f s }

v

which proves the consistency of unliftM2 f .
Now, we go back to show that the conditions in Lemma 3 are actually fulfilled for F and

M.
For the cases of lift and (~), we just use Lemma 2. Here, we have used the assumption

that lift is applied only to well-behaved lenses.
For the case of unit, the proof is obvious.
For the cases of unlift, unlift2, unliftM and unliftM2, the proofs are straightforward

because F S R is a subset of Lens S R.
For the case of observe, the proof is still straightforward. The last two lines of M are

obtained from the fact that () is semantic equality.
Note that, to prove correctness also for the datatype-generic unlifting functions like

unliftT and unliftMT, we need to keep an additional invariant that a lens ` in F S R must
be shape-preserving if S of S :: Pred(S) has a shape (recall that get and put are defined
separately also for these datatype-generic functions, and thus similar discussions to unliftM

are required for them). The above proof still works for this case.

9 Related Work and Discussions

In this section, we discuss related techniques to our paper, making connections to a couple
of notable bidirectional programming approaches, namely semantic bidirectionalization and
the van Laarhoven representation of lenses. In addition, we also discuss the partiality of
derived backward transformations.

9.1 Semantic Bidirectionalization

An alternative way of building bidirectional transformations other than lenses is to me-
chanically transform existing unidirectional programs to obtain a backward counterpart,

ZU064-05-FPR main 22 February 2018 18:16

40 Kazutaka Matsuda and Meng Wang

a technique known as bidirectionalization (Matsuda et al. 2007). Different flavors of
bidirectionalization have been proposed: syntactic (Matsuda et al. 2007), semantic (Matsuda
& Wang 2013, 2014; Voigtländer 2009a; Wang & Najd 2014), and a combination of
the two (Voigtländer et al. 2010, 2013). Syntactic bidirectionalization inspects a forward
function definition written in a somehow restricted syntactic representation and synthesizes
a definition for the backward version. Semantic bidirectionalization on the other hand treats
a polymorphic get as a semantic object, applying the function independently to a collection
of unique identifiers, and the free theorems arising from parametricity state that whatever
happens to those identifiers happens in the same way to any other inputs—this information
is sufficient to construct the backward transformation.

Our framework can be viewed as a more general form of semantic bidirectionalization.
For example, giving a function of type ∀a. [a]→ [a], a bidirectionalization engine in the
style of (Voigtländer 2009a) can be straightforwardly implemented in our framework as
follows.

bff :: (∀a. [a]→ [a])→ (Eq a⇒ Lens [a] [a])
bff f = unliftlist (lsequencelist ◦ f)

Replacing unliftlist and lsequencelist with unliftT and lsequence, we also obtain the datatype
generic version (Voigtländer 2009a).

With the addition of observe and the monadic unlifting functions, we are also able to cover
extensions of semantic bidirectionalization (Matsuda & Wang 2013, 2014) in a simpler and
more fundamental way. For example, liftO2 (and other n-ary observations-lifting functions)
has to be a primitive function previously (Matsuda & Wang 2013, 2014), but can now be
derived from observe, lift and (~) in our framework.

Our work’s unique ability to combine lenses and semantic bidirectionalization results in
more applicability and control than those offered by bidirectionalization alone: user-defined
lenses on base types can now be passed to higher-order functions. For example, the XML
transformation in Section 7 (Q5 of Use Case “STRING” in XML Query Use Cases), which
involves concatenation of strings in the transformation, can be handled by our technique,
but not previously with bidirectionalization (Matsuda & Wang 2013, 2014; Voigtländer
2009a; Wang & Najd 2014). We believe that with the results in this paper, all queries in
XML Query Use Case can now be bidirectionalized. In a sense we are a step forward to the
best of both worlds: gaining convenience in programming without losing expressiveness.

The handling of observation in this paper follows the idea of our previous work (Matsuda
& Wang 2013, 2014) to record only the observations that actually happened at run-time, not
those that may. The latter approach used in (Voigtländer 2009a; Wang & Najd 2014) has the
advantage of not requiring a monad, but at the same time is not applicable to monomorphic
transformations, as the set of the possible observation results is generally infinite due to
lifted lens functions.

9.2 Functional Representation of Bidirectional Transformations

There exists another functional representation of lenses known as the van Laarhoven
representation (O’Connor 2011; van Laarhoven 2009). This representation, adopted by the

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 41

Haskell library lens, encodes bidirectional transformations of type Lens A B as functions
of the following type.

∀f .Functor f ⇒ (B→ f B)→ (A→ f A)

Intuitively, we can read A→ f A as updates on A and a lens in this representation maps
updates on B (view) to updates on A (source), resulting in a “put-back based” style of
programming (Ko et al. 2016; Pacheco et al. 2014b). The van Laarhoven representation
also has its root in the Yoneda Lemma (Jaskelioff & O’Connor 2015; Milewski 2013);
unlike ours which applies the Yoneda Lemma to Lens (−) V , they apply the Yoneda Lemma
to a functor (V,V → (−)). Note that the lens type Lens S V is isomorphic to the type
S→ (V,V→ S).

Compared to our approach, the van Laarhoven representation is rather inconvenient for
applicative-style programming. It cannot be used to derive a put when a get is already given,
as in bidirectionalization (Matsuda & Wang 2013, 2014; Matsuda et al. 2007; Voigtländer
2009a; Voigtländer et al. 2010, 2013; Wang & Najd 2014) and the classical view update
problem (Bancilhon & Spyratos 1981; Dayal & Bernstein 1982; Fegaras 2010; Hegner 1990),
especially in a higher-order setting. In the van Laarhoven representation, a bidirectional
transformation ` ::Lens A B, which has get ` ::A→ B, is represented as a function from some
B structure to some A structure. This difference in direction poses a significant challenge
for higher-order programming, because structures of abstractions and applications are not
preserved by inverting the direction of →. In contrast, our construction of put from get
is straightforward; replacing base type operations with the lifted bidirectional versions
suffices as shown in the unlinesL and evalL examples (monadification is only needed when
supporting observations). Moreover, the van Laarhoven representation does not extend well
to data structures: n-ary functions in the representation do not correspond to n-ary lenses. As
a result, the van Laarhoven representation itself is not useful to write bidirectional programs
such as unlinesL and evalL. Actually as far as we are aware, higher-order programming with
the van Laarhoven representation has not been achieved before.

By using the Yoneda embedding, we obtained the covariant monoidal functor Lens S (−)
that maps lenses of type Lens A B to functions Lens S A→ Lens S B, where S is a Poset
instance (Section 3.4). This is not the only way to use the Yoneda embedding. It is worth
mentioning that, by using the Yoneda embedding, we can also obtain a contravariant
monoidal functor Lens (−) V that maps lenses Lens A B to functions Lens B V→ Lens A V ,
where V is a monoid satisfying certain conditions. A similar idea can be found in Rajkumar
et al. (2013), where they use contravariant functors over the category of lenses as an
abstraction for bidirectional web forms, or formlenses.

9.3 Partiality of Backward Transformation

Unlike the original lens framework (Foster et al. 2007) and their extensions (Bohannon
et al. 2008; Foster et al. 2008) that guarantee the totality of backward transformations,
our derived backward transformations are generally partial, similar to the case in bidi-
rectionalization (Matsuda & Wang 2013, 2014; Matsuda et al. 2007; Voigtländer 2009a;
Voigtländer et al. 2010, 2013; Wang & Najd 2014). Being total has the clear advantage
that the backward transformations never fail, but at the same time, the totality requirement

ZU064-05-FPR main 22 February 2018 18:16

42 Kazutaka Matsuda and Meng Wang

poses strong restrictions on recursive definitions. For example, even for simple fold-like get
functions, totality, i.e., termination, of the corresponding put functions is already non-trivial
to guarantee, as such puts are usually implemented by “unfold” (Wang et al. 2010). As a
result, the Boomerang framework of lenses (Bohannon et al. 2008) only supports map-like
functions, leaving out other recursion patterns.

In our approach, instead of guaranteeing totality at the expense of expressiveness, we
aim to reflect the partiality through types. For example, the type of unlinesF in Example 3,
∀s. [L s String]→ L s String, tells that the shape of a list cannot be changed, while each list
element is updatable. But this indication is not perfect. For updatable data as permitted by
its type, there may still be failures coming from three sources:

• Non-linear use of updatable variables (by g).
• Lifting of non-total lenses (by ` of lift `).
• Changed observation (by p of unliftM/unliftM2).

The first two cases are rather predictable, even though identifying the first case would
require some form of linearity analysis. For the last case, since the R monad in Section 6.2
essentially records the performed observations, there is the possibility to include diagnostic
information when failure happens for improved understandability. Notice that recursion
itself does not affect updatability in our framework: if a recursion does not terminate, it just
means that no lens is constructed, rather than one with a partial put.

9.4 Closedness of Lifted Combinators

In Section 6.1, we looked at the lifting of lens combinators (in contrast to lifting of lenses)
and mentioned that there is a closedness restriction on the argument of liftC, which in some
cases severely restricts the programming style.

A recent work by the authors aims to address this problem in a standalone bidirectional
language named HOBiT (Matsuda & Wang 2018). In HOBiT, lens combinators can be
lifted to language constructs with binders, which have no closedness restriction. To achieve
this, it uses an explicit variable environment for unlifting (which roughly speaking is the
counterpart of the s in L s a in this paper). The explicit nature of the evironment opens it to
complex manipulations, which are required for removing the closedness restriction. But it
also means that an embedded implementation is no longer straightforward.

10 Conclusion

We have proposed a novel framework of applicative bidirectional programming, which
features the strengths of lenses (Bohannon et al. 2008; Foster et al. 2007, 2008) and semantic
bidirectionalization (Matsuda & Wang 2013, 2014; Voigtländer 2009a; Wang & Najd 2014).
In our framework, one can construct bidirectional transformations in an applicative style,
almost in the same way as in a usual functional language. The well-behavedness of the
resulting bidirectional transformations are guaranteed by construction. As a result, complex
bidirectional programs can be now designed and implemented with reasonable efforts.

A future step will be to extend the current ability to handle shape updates. It is important
to relax the restriction that only closed expressions can be unlifted to enable more practical

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 43

programming. A possible solution to this problem would be to abstract certain kind of
containers in addition to base-type values, which is likely to lead to a more fine-grained
treatment of lens combinators and shape updates.

Acknowledgments

We would like to thank Shin-ya Katsumata, Makoto Hamana, Kazuyuki Asada, and Patrik
Jansson for their helpful comments on categorical discussions in this paper. Especially,
Shin-ya Katsumata and Makoto Hamana pointed out the relationship from a preliminary
version of our method to the Yoneda lemma. We would like to thank Oleg Kiselyov for
his informative comments on higher-order abstract syntax. We also would like to thank the
anonymous reviewers of this paper for their helpful comments.

This work is partially supported by JSPS KAKENHI Grant Numbers 24700020, 25540001,
15H02681, and 15K15966, and the Grand-Challenging Project on the “Linguistic Foundation
for Bidirectional Model Transformation” of the National Institute of Informatics, The work
is partly done when the first author was at the University of Tokyo, Japan, and when the
second author was at University of Kent, UK.

References

Bancilhon, François, & Spyratos, Nicolas. (1981). Update semantics of relational views.
Acm trans. database syst., 6(4), 557–575.

Barbosa, Davi M. J., Cretin, Julien, Foster, Nate, Greenberg, Michael, & Pierce, Benjamin C.
(2010). Matching lenses: alignment and view update. Pages 193–204 of: Hudak, Paul, &
Weirich, Stephanie (eds), ICFP. ACM.

Bernardy, Jean-Philippe, Jansson, Patrik, & Paterson, Ross. (2012). Proofs for free -
parametricity for dependent types. J. funct. program., 22(2), 107–152.

Bird, Richard S., Gibbons, Jeremy, Mehner, Stefan, Voigtländer, Janis, & Schrijvers, Tom.
(2013). Understanding idiomatic traversals backwards and forwards. Pages 25–36 of:
chieh Shan, Chung (ed), Haskell. ACM.

Bohannon, Aaron, Foster, J. Nathan, Pierce, Benjamin C., Pilkiewicz, Alexandre, & Schmitt,
Alan. (2008). Boomerang: resourceful lenses for string data. Pages 407–419 of: Necula,
George C., & Wadler, Philip (eds), POPL. ACM.

Church, Alonzo. (1940). A formulation of the simple theory of types. J. symb. log., 5(2),
56–68.

Dayal, Umeshwar, & Bernstein, Philip A. (1982). On the correct translation of update
operations on relational views. Acm trans. database syst., 7(3), 381–416.

Ellis, Tom. 2012 (Sep). Category and lenses. Blog post: http://web.jaguarpaw.co.
uk/~tom/blog/posts/2012-09-30-category-and-lenses.html.

Fegaras, Leonidas. (2010). Propagating updates through XML views using lineage tracing.
Pages 309–320 of: Li, Feifei, Moro, Mirella M., Ghandeharizadeh, Shahram, Haritsa,
Jayant R., Weikum, Gerhard, Carey, Michael J., Casati, Fabio, Chang, Edward Y.,
Manolescu, Ioana, Mehrotra, Sharad, Dayal, Umeshwar, & Tsotras, Vassilis J. (eds),
ICDE. IEEE.

ZU064-05-FPR main 22 February 2018 18:16

44 Kazutaka Matsuda and Meng Wang

Foster, J. Nathan, Greenwald, Michael B., Moore, Jonathan T., Pierce, Benjamin C., &
Schmitt, Alan. (2007). Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem. Acm trans. program. lang. syst., 29(3).

Foster, J. Nathan, Pilkiewicz, Alexandre, & Pierce, Benjamin C. (2008). Quotient lenses.
Pages 383–396 of: Hook, James, & Thiemann, Peter (eds), ICFP. ACM.

Foster, Nate, Matsuda, Kazutaka, & Voigtländer, Janis. (2010). Three complementary
approaches to bidirectional programming. Pages 1–46 of: Gibbons, Jeremy (ed), SSGIP.
Lecture Notes in Computer Science, vol. 7470. Springer.

Hayashi, Yasushi, Liu, Dongxi, Emoto, Kento, Matsuda, Kazutaka, Hu, Zhenjiang, &
Takeichi, Masato. (2007). A web service architecture for bidirectional XML updating.
Pages 721–732 of: Dong, Guozhu, Lin, Xuemin, Wang, Wei, Yang, Yun, & Yu, Jeffrey Xu
(eds), APWeb/WAIM. Lecture Notes in Computer Science, vol. 4505. Springer.

Hegner, Stephen J. (1990). Foundations of canonical update support for closed database
views. Pages 422–436 of: Abiteboul, Serge, & Kanellakis, Paris C. (eds), ICDT. Lecture
Notes in Computer Science, vol. 470. Springer.

Hidaka, Soichiro, Hu, Zhenjiang, Inaba, Kazuhiro, Kato, Hiroyuki, Matsuda, Kazutaka, &
Nakano, Keisuke. (2010). Bidirectionalizing graph transformations. Pages 205–216 of:
Hudak, Paul, & Weirich, Stephanie (eds), ICFP. ACM.

Hofmann, Martin, Pierce, Benjamin C., & Wagner, Daniel. (2011). Symmetric lenses. Pages
371–384 of: Ball, Thomas, & Sagiv, Mooly (eds), POPL. ACM.

Hu, Zhenjiang, Mu, Shin-Cheng, & Takeichi, Masato. (2004). A programmable editor for
developing structured documents based on bidirectional transformations. Pages 178–189
of: Heintze, Nevin, & Sestoft, Peter (eds), PEPM. ACM.

Huet, Gérard P., & Lang, Bernard. (1978). Proving and applying program transformations
expressed with second-order patterns. Acta inf., 11, 31–55.

Jaskelioff, Mauro, & O’Connor, Russell. (2015). A representation theorem for second-order
functionals. Journal of functional programming, 25(e13), 1–36.

Ko, Hsiang-Shang, Zan, Tao, & Hu, Zhenjiang. (2016). Bigul: a formally verified core
language for putback-based bidirectional programming. Pages 61–72 of: Erwig, Martin,
& Rompf, Tiark (eds), Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA, January
20 - 22, 2016. ACM.

Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2011). Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electr. notes theor. comput. sci., 229(5), 97–117.

Liu, Dongxi, Hu, Zhenjiang, & Takeichi, Masato. (2007). Bidirectional interpretation of
XQuery. Pages 21–30 of: Ramalingam, G., & Visser, Eelco (eds), Proceedings of the
2007 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, 2007, Nice, France, January 15-16, 2007. ACM.

Mac Lane, Saunders. (1998). Categories for the working mathematician. Second edition
edn. Graduate Texts in Matheematics, vol. 5. Springer.

Matsuda, Kazutaka, & Wang, Meng. (2013). Bidirectionalization for free with runtime
recording: or, a light-weight approach to the view-update problem. Pages 297–308 of:
Peña, Ricardo, & Schrijvers, Tom (eds), PPDP. ACM.

Matsuda, Kazutaka, & Wang, Meng. (2014). “Bidirectionalization for free” for
monomorphic transformations. Science of computer programming, 111(1), 79–109.
DOI: 10.1016/j.scico.2014.07.008.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 45

Matsuda, Kazutaka, & Wang, Meng. (2015). Applicative bidirectional programming with
lenses. Pages 62–74 of: Fisher, Kathleen, & Reppy, John H. (eds), Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015,
Vancouver, BC, Canada, September 1-3, 2015. ACM.

Matsuda, Kazutaka, & Wang, Meng. (2018). HOBiT: Programming lenses without using
lens combinators. ESOP. Accepted.

Matsuda, Kazutaka, Hu, Zhenjiang, Nakano, Keisuke, Hamana, Makoto, & Takeichi,
Masato. (2007). Bidirectionalization transformation based on automatic derivation of
view complement functions. Pages 47–58 of: Hinze, Ralf, & Ramsey, Norman (eds),
ICFP. ACM.

McBride, Conor, & Paterson, Ross. (2008). Applicative programming with effects. J. funct.
program., 18(1), 1–13.

Milewski, Bartosz. 2013 (Oct). Lenses, Stores, and Yoneda. blog post: http://
bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda/.

Miller, Dale, & Nadathur, Gopalan. (1987). A logic programming approach to manipulating
formulas and programs. Pages 379–388 of: Proceedings of the 1987 Symposium on
Logic Programming, San Francisco, California, USA, August 31 - September 4, 1987.
IEEE-CS.

Mu, Shin-Cheng, Hu, Zhenjiang, & Takeichi, Masato. (2004). An algebraic approach to
bi-directional updating. Pages 2–20 of: Chin, Wei-Ngan (ed), APLAS. Lecture Notes in
Computer Science, vol. 3302. Springer.

O’Connor, Russell. (2011). Functor is to lens as applicative is to biplate: Introducing
multiplate. Corr, abs/1103.2841. Accepted in WGP’11, but not included in its
proceedings.

Pacheco, Hugo, Zan, Tao, & Hu, Zhenjiang. (2014a). Biflux: A bidirectional functional
update language for XML. Pages 147–158 of: Chitil, Olaf, King, Andy, & Danvy, Olivier
(eds), Proceedings of the 16th International Symposium on Principles and Practice of
Declarative Programming, Kent, Canterbury, United Kingdom, September 8-10, 2014.
ACM.

Pacheco, Hugo, Hu, Zhenjiang, & Fischer, Sebastian. (2014b). Monadic combinators for
"putback" style bidirectional programming. Pages 39–50 of: Chin, Wei-Ngan, & Hage,
Jurriaan (eds), PEPM. ACM.

Paterson, Ross. (2001). A new notation for arrows. Pages 229–240 of: Pierce, Benjamin C.
(ed), ICFP. ACM.

Paterson, Ross. (2012). Constructing applicative functors. Pages 300–323 of: Gibbons,
Jeremy, & Nogueira, Pablo (eds), MPC. Lecture Notes in Computer Science, vol. 7342.
Springer.

Pfenning, Frank, & Elliott, Conal. (1988). Higher-order abstract syntax. Pages 199–208
of: Wexelblat, Richard L. (ed), Proceedings of the ACM SIGPLAN’88 Conference on
Programming Language Design and Implementation (PLDI), Atlanta, Georgia, USA,
June 22-24, 1988. ACM.

Rajkumar, Raghu, Lindley, Sam, Foster, Nate, & Cheney, James. (2013). Lenses for web
data. In Preliminary Proceedings of Second International Workshop on Bidirectional
Transformations (BX 2013).

ZU064-05-FPR main 22 February 2018 18:16

46 Kazutaka Matsuda and Meng Wang

Reynolds, John C. (1983). Types, abstraction and parametric polymorphism. Pages 513–
523 of: Mason, R.E.A. (ed), Information Processing. Elsevier Science Publishers B.V.
(North-Holland).

van Laarhoven, Twan. 2009 (Jul). CPS based functional references. blog post: http:
//www.twanvl.nl/blog/haskell/cps-functional-references.

Voigtländer, Janis. (2009a). Bidirectionalization for free! (pearl). Pages 165–176 of: Shao,
Zhong, & Pierce, Benjamin C. (eds), POPL. ACM.

Voigtländer, Janis. (2009b). Free theorems involving type constructor classes: functional
pearl. Pages 173–184 of: Hutton, Graham, & Tolmach, Andrew P. (eds), ICFP. ACM.

Voigtländer, Janis, Hu, Zhenjiang, Matsuda, Kazutaka, & Wang, Meng. (2010). Combining
syntactic and semantic bidirectionalization. Pages 181–192 of: Hudak, Paul, & Weirich,
Stephanie (eds), ICFP. ACM.

Voigtländer, Janis, Hu, Zhenjiang, Matsuda, Kazutaka, & Wang, Meng. (2013). Enhancing
semantic bidirectionalization via shape bidirectionalizer plug-ins. J. funct. program.,
23(5), 515–551.

Vytiniotis, Dimitrios, & Weirich, Stephanie. (2010). Parametricity, type equality, and
higher-order polymorphism. J. funct. program., 20(2), 175–210.

Wadler, Philip. (1989). Theorems for free! Pages 347–359 of: FPCA.
Wallace, Malcolm, & Runciman, Colin. (1999). Haskell and XML: Generic combinators

or type-based translation? Pages 148–159 of: Rémy, Didier, & Lee, Peter (eds), ICFP.
ACM.

Wang, Meng, & Najd, Shayan. (2014). Semantic bidirectionalization revisited. Pages 51–62
of: Chin, Wei-Ngan, & Hage, Jurriaan (eds), PEPM. ACM.

Wang, Meng, Gibbons, Jeremy, Matsuda, Kazutaka, & Hu, Zhenjiang. (2010). Gradual
refinement: Blending pattern matching with data abstraction. Pages 397–425 of: Bolduc,
Claude, Desharnais, Jules, & Ktari, Béchir (eds), MPC. Lecture Notes in Computer
Science, vol. 6120. Springer.

Wang, Meng, Gibbons, Jeremy, & Wu, Nicolas. (2011). Incremental updates for efficient
bidirectional transformations. Pages 392–403 of: Chakravarty, Manuel M. T., Hu,
Zhenjiang, & Danvy, Olivier (eds), ICFP. ACM.

Wang, Meng, Gibbons, Jeremy, Matsuda, Kazutaka, & Hu, Zhenjiang. (2013). Refactoring
pattern matching. Sci. comput. program., 78(11), 2216–2242.

Xiong, Yingfei, Liu, Dongxi, Hu, Zhenjiang, Zhao, Haiyan, Takeichi, Masato, & Mei, Hong.
(2007). Towards automatic model synchronization from model transformations. Pages
164–173 of: Stirewalt, R. E. Kurt, Egyed, Alexander, & Fischer, Bernd (eds), ASE. ACM.

Yu, Yijun, Lin, Yu, Hu, Zhenjiang, Hidaka, Soichiro, Kato, Hiroyuki, & Montrieux, Lionel.
(2012). Maintaining invariant traceability through bidirectional transformations. Pages
540–550 of: Glinz, Martin, Murphy, Gail C., & Pezzè, Mauro (eds), ICSE. IEEE.

A Proof of Lemma 1

The proof is based on free theorems (the standard binary version) (Reynolds 1983; Voigtlän-
der 2009b; Wadler 1989).

The difficulty of the proof lies in the treatment of unlift. Usually, a proof based on free
theorems is done by encoding relationship between two arguments (e.g., ` and idL) of a

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 47

polymorphic function to a relation, and then by using the fact that such a polymorphic
function preserves the relation. Here, in addition, we have to prove that lift and unlift

preserve the relation because f can use lift and unlift internally. Our proof obligation for
unlift is that two arbitrary polymorphic functions g1 and g2 that preserve the relation
satisfies that g1 idL = g2 idL. That is, it might seem that the relation must contain the pair
(`, idL) and must be diagonal at the same time, which appears contradictory. Very roughly
speaking, this difficulty comes from the fact that we have to encode two different goals,
f `= f idL ◦̂ ` and g1 idL = g2 idL where f , g1 and g2 are of the same polymorphic type, to
one relation. To overcome the problem, we use the polymorphic nature of s and the fact that
such a relation can depend on the choice of s, which is the reason why our proof becomes
tricky.

A.1 Free Theorems (Binary Version)

We write R :: A1↔A2 if R is a binary relation between A1 and A2. For relations R :: A1↔A2

and R′ :: B1↔ B2, we abuse the notation to write R→ R′ :: (A1→ B1)↔ (A2→ B2) for
the relation {(f1, f2) | ∀(x1,x2) ∈ R. (f1 x1, f2 x2) ∈ R′}, and (R,R′) :: (A1,B1)↔ (A2,B2)

for {((x1,y1),(x2,y2)) | (x1,x2) ∈ R,(y1,y2) ∈ R′}.
We introduce a (binary) relational interpretation JτK2

ρ
of types, where ρ is a mapping

from type variable to binary relations, as follows.

JaK2
ρ

= ρ(a)
JBK2

ρ
= {(e,e) | e :: B} if B is a base type

JT1→ T2K2
ρ
= JT1K2

ρ
→ JT2K2

ρ

J(T1,T2)K2
ρ

= (JT1K2
ρ
,JT2K2

ρ
)

J∀a.TK2
ρ

=
{
(u,v)

∣∣∣∀R :: S1↔ S2. (uS1 ,vS2) ∈ JT K2
ρ[a7→R]

}
Here, ρ[a 7→R] is an extension of ρ with a 7→R. If ρ = /0, we sometimes write JT K2 instead
of JT K2

/0. Similarly to the unary case, we write J∀α.τK2 as ∀R.F where F is the interpretation
JτK2
{α 7→R}. For a base type B, we also write B for JBK2.

Then, parametricity states that, for a closed term f of a closed type τ , (f , f) ∈ JτK2 holds.
Free theorems are theorems obtained by instantiating parametricity.

Next, we introduce the binary-version of relational action (Voigtländer 2009b).

Definition 6 ((Binary) Relational Action). For type constructors κ1 and κ2, F is called
a relational action between κ1 and κ2, denoted by F :: κ1 ↔ κ2, if F maps any relation
R :: τ1↔ τ2 for every pair of closed types τ1 and τ2 to FR :: κ1 τ1↔ κ2 τ2.

Accordingly, the relational interpretations are extended as:

JκK2
ρ

= ρ(κ)

Jτ1 τ2K2 = Jτ1K2
ρ
Jτ2K2

ρ

J∀κ.τK2 =
{
(u,v)

∣∣∣∀F : κ1↔ κ2. (uκ1 ,vκ2) ∈ JτK2
ρ[κ 7→F]

}
Parametricity holds also for this relational interpretation (Bernardy et al. 2012; Vytiniotis
& Weirich 2010). Here, κ , κ1 and κ2 are type constructors of kind ∗ → ∗, and thus the

ZU064-05-FPR main 22 February 2018 18:16

48 Kazutaka Matsuda and Meng Wang

quantified F is a relational action. The notation of relational action can be extended to type
constructors of kinds ∗→ ∗→ ∗, ∗→ ∗→ ∗→ ∗ and so on.

Also for binary relations R and S, we write Lens R S for (R→ S,R→ S→ R). The
following lemma holds for Lens.

Lemma 4. For binary relations R, S and T, if (f1, f2) ∈ Lens R S and (g1,g2) ∈ Lens S T,
then (g1 ◦̂ f1,g2 ◦̂ f2) ∈ Lens R T.

A.2 Proof

Let us consider a function f of type ∀s.Lens s A→ Lens s B in which Lens is abstract. This
means that we have a function h

∀`.(∀a b.Lens a b→ (∀s. ` s a→ ` s b))
→ (∀a b.(∀s. ` s a→ ` s b)→ Lens a b)
→∀s. ` s A→ ` s B

such that f = h lift unlift.
For functions of the type, we have the following free theorem.

Lemma 5 (A Free Theorem). Let f be a function of type ∀s.Lens s A→ Lens s B in which
Lens is abstract. Suppose that F :: κ1↔ κ2 is a relational action satisfying the following
conditions.

• (lift, lift) ∈ ∀T.∀U.Lens T U→ (∀S.F S T→ F S U).
• (unlift,unlift) ∈ ∀T.∀U.(∀S.F S T→ F S U)→ Lens T U.

Then, (f , f) ∈ ∀S.F S A→ F S B.

Let ` :: Lens S1 S2 be a lens. Then, we define F as follows.

F (S : A1↔ A2) (R : B1↔ B2) =
{
(x1,x2)

∣∣∣∣∃(z1,z2) ∈ Lens S1 R.

(x1,x2) = (z1,z2 ◦̂ `)

}
if S= /0 :: S1↔ S2

Lens S R otherwise

Notice that we do not require that F S R⊆ Lens S R when S= /0. Also notice that (`1, `2) ∈
Lens /0 R for any l1 and l2 with appropriate types. The complication of F’s definition
comes from the two different contexts where f can be instantiated: (1) f in the proof of
f idL ◦̂ ` = f `, and (2) f in the proof of f idL = f idL. Also notice that any pair of lenses
(`1, `2) of appropriate types belongs to Lens /0 R, because /0→ R contains any pairs of
functions of the giving types.

Assume that the required conditions in Lemma 5 are fulfilled. Then, by the lemma, we
have (f , f) ∈ F S A→ F S B for any S. Taking S1 as A, we have (idL, `) ∈ F /0 A because
(idL, idL) ∈ F A A. Since (f , f) ∈ F /0 A→ F /0 B, we have (f idL, f `) ∈ F /0 B. Thus, there
is a pair (z1,z2) that is related by the relation Lens A B satisfying f idL = z1 and f `= z2 ◦̂ `.
Since A and B are diagonal relations on A and B respectively, A→ B is also diagonal, and so
does Lens A B. Since Lens A B is diagonal, we have z1 = z2. Thus, we obtain f idL ◦̂ `= f `.

ZU064-05-FPR main 22 February 2018 18:16

Applicative Bidirectional Programming 49

Case: (lift, lift) ∈ ∀T.∀U.Lens T U→ (∀S.F S T → F S U). Let T :: A1 ↔ A2 and U ::
B1↔ B2 be relations. Let x1 :: Lens A1 B1 and x2 :: Lens A2 B2 be lenses. Let S :: C1↔C2

be a relation. Let (z1,z2) be lenses such that (z1,z2) ∈ F S T. Then, by Lemma 4, we have
(lift x1 z1, lift x2 z2) = (x1 ◦̂ z1,x2 ◦̂ z2) ∈ F S U.

Case: (unlift,unlift) ∈ ∀T.∀U.(∀S.F S T → F S U)→ Lens T U. Let T :: A1 ↔ A2 and
U :: B1↔ B2 be relations. Let g1 and g2 be functions satisfying (g1,g2) :: ∀S.F S T→F SU.
Take S= T. Suppose T = /0 :: S1↔ S2. Then, we trivially have (g1 idL,g2 idL) ∈ Lens /0 U.
Recall that (`1, `2) ∈ Lens /0 U for any `1 and `2 with appropriate types. Suppose T 6=
/0 :: S1↔ S2. Then, we have (idL, idL) ∈ F T T and thus (g1 idL,g2 idL) ∈ F T U. Since we
have assumed T 6= /0 :: S1↔ S2, we have (g1 idL,g2 idL) ∈ Lens T U.

ZU064-05-FPR main 22 February 2018 18:16

